Montgomery County Community College EGR 115 Engineering Graphics 3-2-2

COURSE DESCRIPTION:

This course covers the basics of 3-Dimensional Solid Modeling design from conception through to final product production. Drawing, dimensioning, and tolerancing techniques are discussed as well as fitment and scaling. Solutions to 3D problems and spatial analysis through descriptive geometry are also analyzed. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- MAT 100 Intermediate Algebra or MAT 100B Intermediate Algebra & Review

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Apply the concept of design and use of engineering graphics as an engineering communications media. 	Lecture/Discussion Demonstration and Practice Case Studies Student Projects	Demonstration Student Projects
 Employ solid modeling and basic solid modeling functions as they relate to checking for fit and function. 	Lecture/Discussion Demonstration and Practice Case Studies Student Projects	Demonstration Student Projects
3. Describe the large and varied role that graphical information plays in engineering design.	Lecture/Discussion Demonstration and Practice Case Studies Student Projects	Demonstration Student Projects

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. Identify the role of	Lecture/Discussion	Demonstration
graphics in, and the	Demonstration and	Student Projects
benefits of, concurrent	Practice	
engineering.	Case Studies	
	Student Projects	
5. Identify four types of	Lecture/Discussion	Demonstration
factors that constrain	Demonstration and	Student Projects
design problems.	Practice	
	Case Studies	
	Student Projects	
6. Create contour	Lecture/Discussion	Demonstration
sketches using	Demonstration and	Student Projects
visualization in ideation	Practice	-
and problem	Case Studies	
identification.	Student Projects	
7. Identify symbols in	Lecture/Discussion	Demonstration
schematics and locate	Demonstration and	Student Projects
standard drawing	Practice	
symbols.	Case Studies	
	Student Projects	
8. Identify shapes that	Lecture/Discussion	Demonstration
could be formed by	Demonstration and	Student Projects
revolution techniques	Practice	
and sketch their	Case Studies	
profiles.	Student Projects	
9. Describe how a	Lecture/Discussion	Demonstration
parametric modeler	Demonstration and	Student Projects
differs from a solid	Practice	Student i Tojects
modeler.	Case Studies	
	Student Projects	
10. Present the rationale	Lecture/Discussion	Demonstration
for controlling	Demonstration and	Student Projects
engineering	Practice	
documents.	Case Studies	
	Student Projects	

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Introduction to Engineering Graphics and SolidWorks
- 2. Engineering Drawings
- 3. Orthographic Projections
- 4. Pictorial Drawings

- 5. Dimensioning
- 6. Engineering Design
- 7. Additive Manufacturing
- 8. Sectioning
- 9. Advanced Drawing Techniques
- 10. Advanced Modeling Techniques
- 11. Tolerancing
- 12. Threads and Fasteners
- 13. Assembly Drawings
- 14. CSWA Exam Preparation

LEARNING MATERIALS: Plantenberg, K. (2016). *Engineering Graphics Essentials: Text and Digital Learning* (5th Ed.), SDC Publications.

Computer Labs: software for 3-D modeling Engineering Labs: rapid prototyping system Instructor Handouts, text references (engineering library)

Other materials may be required and may be made available directly to the student or via the College's library reserve or its computer network.

COURSE APPROVAL:

H. Thomas Tucker, Jr. Assistant Professor of Engineering and	William H. Brownlowe,
Associate Professor of Engineering	Date: 10/2005
VPAA/Provost or designee Compliance Verification:	
John Flynn Jr, Ed.D.	Date: 10/10/2005
Revised by: William H. Brownlowe	Date: 9/24/2013
VPAA/Provost or designee Compliance Verification:	
Victoria L. Bastecki-Perez, Ed.D.	Date: 9/26/2013
Revised by: Chengyang Wang, Ph.D.	Date: 12/21/2017
VPAA/Provost or designee Compliance Verification:	Date: 1/10/2018

And-froz

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.