Montgomery County Community College MAT 190 Calculus and Analytic Geometry I 4-4-0

COURSE DESCRIPTION:

A course designed primarily for students who will major in mathematics, science, engineering, or business. Topics include concepts from analytic geometry, limits, differentiation and integration of algebraic and transcendental functions, curve sketching and applications. A TI 84 Plus Graphing Calculator is required for the course.

REQUISITE(S):

Previous Course Requirements

MAT 162 Precalculus II or MAT 170 Algebra and Trigonometry with a minimum grade of "C"

Concurrent Course Requirements None

COURSE COMMENTS

- Quantitative Reasoning, Algebra, and Statistics Accuplacer Test Score of 251 or higher <u>or</u> an Advanced Algebra and Functions Accuplacer Test Score of 276 or higher.

LEARNING OUTCOMES Upon successful completion	LEARNING ACTIVITIES	EVALUATION METHODS
be able to:		
1. Verify the limit of a linear function by using the $\varepsilon - \sigma$ definition of limit.	Lecture Group work Homework Projects Quizzes	Homework Quizzes Tests Projects
 Evaluate limits of many algebraic and transcendental functions, including one-sided and infinite limits, and limits at infinity. 	Lecture Group work Homework Projects Quizzes	Homework Quizzes Tests Projects
3. Discuss the continuity and points of discontinuity of many algebraic and transcendental functions.	Lecture Group work Homework Projects Quizzes	Homework Quizzes Tests Projects

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. Differentiate and integrate	Lecture	Homework
many algebraic and	Group work	Quizzes
transcendental functions.	Homework	Tests
	Quizzes	Projects
5. Apply knowledge of	Lecture	Homework
differentiation to curve	Group work	Quizzes
sketching and to solving	Homework	Tests*
maximum-minimum	Projects	Projects
problems and related rates	Quizzes	
problems.		
6. Apply knowledge of	Lecture	Homework
integration to finding area.	Group work	Quizzes
	Homework	Tests
	Projects	Projects
	Quizzes	
7. Apply knowledge of	Lecture	Homework
differentiation and	Group work	Quizzes
integration to solving	Homework	Tests
rectilinear motion	Projects	Projects
problems.	Quizzes	
8. State and explain or	Lecture	Homework
illustrate some theorems,	Group work	Quizzes
including the Mean Value	Homework	Tests
Theorem and the	Projects	Projects
Fundamental Theorem of	Quizzes	
Calculus.		
9. Use the TI-84 Plus	Lecture	Homework
graphing calculator in	Group work	Quizzes
relevant Calculus I	Homework	Tests
concepts.	Projects	Projects
	Quizzes	
10. Students will be able to	Lecture	Homework
locate and access	Group work	Quizzes
information from various	Homework	Tests
sources, synthesize the	Projects	Projects
information in order to	Quizzes	
analysis mathematical		
models		

At the conclusion of each semester/session, assessment of the learning outcomes will be complete by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that of 70% of students will meet or exceed outcome criteria.

LEARNING ACTIVITIES: *Learning activities for Core Competency assessment

- 1. Lecture
- 2. Labs
- 3. Group Problem-Solving Activities
- 4. Exams

SEQUENCE OF TOPICS:

- 1. A Preview of Calculus; Limits
- 2. Limits; Continuity; One Sided Limits
- 3. Infinite Limits
- 4. Derivatives; Tangent Line Problem; Rates of Change
- 5. Derivative Formulas; Chain Rule; Logarithmic Differentiation; Inverse Functions
- 6. Implicit Differentiation. Related Rates
- 7. Extrema on an Interval; Rolle's Theorem; Mean Value Theorem
- 8. Increasing, decreasing functions; First Derivative Test; Concavity; Second Derivative Test; Limits at Infinity
- 9. Curve Sketching; Optimization Problems
- 10. Differentials
- 11. Indeterminate Forms and L'Hopital's Rule
- 12. Antiderivatives and Indefinite Integration; Area; Riemann Sums
- 13. Definite Integrals; the Fundamental Theorem of Calculus

LEARNING MATERIALS:

Textbook:

Larson & Edwards. (2014). Calculus (10th ed.) Brooks Cole Cengage Learning James Stewart, Calculus Early Transcendentals,8th edition, Cengage Learning

Calculator:

TI-84 Plus Graphing Calculator. If a student has a TI-83+, they do not need to buy a TI-84+.

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Prepared by:	Edwina K. Smith, Professor of Mathematics	Date:	9/1995
Revised by:	Thomas Moyer, Professor of Mathematics	Date:	6/1998
Revised by:	Roger Willig, Professor of Mathematics	Date:	11/1999
Revised by:	Thomas Moyer, Professor of Mathematics	Date:	5/2002
Revised by:	Walter R. Hunter, Professor of Mathematics	Date:	10/2004
Revised by:	Walter R. Hunter, Professor of Mathematics	Date:	5/2005
Revised by:	Marion Graziano	Date:	12/2/2012
11700110000	Victoria L. Bastecki-Perez, Ed.D.	Date:	2/18/2013

Revised by: VPAA/Provost	Walter Hunter	Date:	9/21/2016
Victoria L. Bastecki-Perez, Ed.D.	Date:	9/21/2016	
Revised by: VPAA/Provost	Marion Graziano/Debbie Dalrymple or designee Compliance Verification:	Date: Date:	8/2/2017 8/24/2017

Wal-feve

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.