Montgomery County Community College CHE 152 Principles of Chemistry II (For the Science Major) 4-3-3

COURSE DESCRIPTION:

This course is a continuation of CHE 151. The topics covered are: intermolecular forces, solutions, kinetics, equilibria, electrochemistry, introductory thermodynamics, and nuclear chemistry. The laboratory includes labs in these areas with emphasis on acid-base titration. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- CHE 151 Principles of Chemistry I

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course,	LEARNING ACTIVITIES	EVALUATION METHODS
the student will be able to:		Laboratory Reports
intermolecular forces in	Class Discussions	Exams
liquids and solids, and	Laboratory Activities	ACS Final Exam
be able to read phase diagrams.	Write-Up of Laboratory Report	
2. Perform calculations for	Lectures	Laboratory Reports
various physical	Class Discussions	Exams
properties of solutions;	Emphasis on Calculations	ACS Final Exam
such as, colligative	Laboratory Activities	
properties and	Write-Up of Laboratory	
concentrations.	Report	
3. Perform chemical	Lectures	Laboratory Reports
kinetic calculations for	Class Discussions	Exams
rate of reaction and rate	Emphasis on Calculations	ACS Final Exam
law, plot concentration	Laboratory Activities	
vs. time equations, and	Write-Up of Laboratory	
understand activation	Report	
energy, mechanisms		
and catalysis.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. Perform calculations on	Lectures	Laboratory Reports
weak acid and base	Class Discussions	Exams
solutions and determine	Emphasis on Calculations	ACS Final Exam
pH of acid, base and	Laboratory Activities	
salt solutions.	Write-Up of Lab Report	
5. Perform calculations for	Lectures	Laboratory Reports
acid-base titrations,	Class Discussions	Exams
buffer solutions,	Emphasis on Calculations	ACS Final Exam
common ion effect and	Laboratory Activities	
solubility products.	Write-Up of Laboratory	
	Report	
6. Perform calculations for	Lectures	Laboratory Reports
entropy, free energy,	Class Discussions	
and equilibrium, and	Emphasis on Calculations	ACS FINALEXAM
	Laboratory Activities	
Thormodynamics	Poport	
7 Write balanced redex		Laboratory Poporta
reactions and perform	Class Discussions	Exame
electrochemical	Emphasis on Calculations	ACS Final Exam
calculations for galvanic	Laboratory Activities	
cells concentration	Write-Up of Laboratory	
cells, electrolysis, and	Report	
determine spontaneity		
of redox reactions.		
8. Write balanced nuclear	Lectures	Exams
equations, and	Class Discussions	ACS Final Exam
understand	Emphasis on Calculations	
transmutation, fission,		
and fusion and the uses		
of isotopes.		

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- I. Intermolecular Forces and Liquids and Solids
 - A. The Kinetic Molecular Theory of Liquids and Solids
 - B. Intermolecular Forces and Properties of Liquids
 - C. Crystal Structure and Types of Crystals
 - D. Amorphous Solids
 - E. Phase Changes and Phase Diagrams
 - Physical Properties of Solutions

П.

- A. Concentration Units
- B. Effect of Temperature and Pressure on Solubility of Solute
- C. Colligative Properties
- III. Chemical Kinetics
 - A. The Rate of Reaction
 - B. Rate Law
 - C. Concentration and Time Equations
 - D. Activation Energy and Temperature Dependence of Rate Constants
 - E. Reaction Mechanisms and Catalysis
- IV. Chemical Equilibrium
 - A. Equilibrium Constant
 - B. Factors that Affect the Equilibrium Constant
- V. Acids and Bases
 - A. Bronsted Acids and Bases
 - B. pH Calculations
 - C. Calculations of Weak Acid Ionization Constants
 - D. Calculations of Weak Base Ionization Constants
 - E. Conjugate Acids and Bases
 - F. Diprotic and Polyprotic Acids
 - G. Molecular Structure and the Strength of Acids
 - H. Acid-Base Properties of Salts, Oxides and Hydroxides
 - I. Lewis Acids and Bases
- VI. Acid-Base Equilibria and Solubility Equilibria
 - A. Homogeneous vs. Heterogeneous Equilibira
 - B. Common Ion Effect
 - C. Buffer Solutions
 - D. Acid-Base Titration
 - E. Acid-Base Indicators
 - F. Solubility Equilibrium
 - G. Common Ion Effect and Solubility
 - H. pH and Solubility
 - I. Complex Ion Equilibria
- VII. Entropy, Free Energy, and Equilibrium
 - A. Three Laws of Thermodynamics
 - B. Spontaneous Processes
 - C. Entropy
 - D. Gibbs Free Energy
 - E. Free Energy and Chemical Equilibrium
- VIII. Electrochemistry
 - A. Redox Reactions
 - B. Galvanic Cells
 - C. Standard Reduction Potentials
 - D. Spontaneity of Redox Reactions
 - E. Effect of Concentration of Cell EMF
 - F. Electrolysis

- IX. Nuclear Chemistry
 - A. Nuclear Reactions
 - B. Nuclear Stability
 - C. Natural Radioactivity
 - D. Nuclear Transmutation
 - E. Nuclear Fission and Fusion
 - F. Uses of Isotopes and Biological Effects of Radiation

SEQUENCE OF EXPERIMENTS:

- 1. Synthesis of Aspirin
- 2. Distillation of Salt Water
- 3. Colligative Properties: Freezing Point Depression
- 4. Chemical Kinetics: Rate of Decomposition of Hydrogen Peroxide
- 5. Reaction Reversibility and Le Chatelier's Principle
- 6. Determination of an Equilibrium Constant Using a Spectrophotometer
- 7. Antacid Analysis
- 8. Determination of Acetic Acid in Vinegar
- 9. Acid-Base Equilibria: Determination of Acid Ionization Constant
- 10. Thermodynamics of Electrochemical Cells

LEARNING MATERIALS:

Chang, R. and Goldsby, K. (2013). *Chemistry* (11th ed.). McGraw-Hill Publishers.

- Chang, R. and Goldsby, K. (2013). *Student Solution Manual* (11th ed.). McGraw-Hill Publishers.
- Van Koppen. (2008). *General Chemistry Laboratory Manual* (Special Edition). McGraw-Hill Publishers.
- Scientific calculator (logarithms, exponential, powers, roots, etc.)

Tutoring Services (College Hall 180, South Hall 159)

Computer-based Plotting

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Prepared by:	Dr. E. Martins, Assistant F	Professor of Chemistry	Date:	10/5/2004
Revised by:	Dr. E. Martins, Assistant F	rofessor of Chemistry	Date:	2/11/2009
VPAA/Provost	Compliance Verification:	Dr. John C. Flynn, Jr.	Date:	9/11/2009
Revised by:	Dr. Janet A. Graden Assistant Professor of Che	emistry	Date:	12/19/2012
VPAA/Provost	or designee Compliance V	erification:		
	Victoria L. Bastecki-Perez	, Ed.D.	Date:	2/13/2013
Revised by:	Debbie Dalrymple		Date:	6/27/2016
VPAA/Provost	or designee Compliance V	erification:		
	Victoria L. Bastecki-Perez	, Ed.D.	Date:	6/27/2016

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.