Montgomery County Community College CHE 261 Organic Chemistry I 4-3-3

COURSE DESCRIPTION:

This course covers the nomenclature, structure, properties and reactions of many important classes of organic compounds. Stereochemistry, reaction mechanism and syntheses are stressed. The laboratory demonstrates basic techniques and syntheses discussed during lecture. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITE(S):

Previous Course Requirements CHE 152 - Principles of Chemistry II

CO-REQUISITE(S): None

Upon successful completion of this course, the student will be able to:

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
 Describe atomic structure by using electron configuration, valence bond theory, hybridization and simple Molecular Orbital Theory. 	Lectures Class Discussions Problem Solving	Section Exam and Comprehensive Final Exam
2. Predict the polarity of a covalent molecule; draw resonance structures; define acid and base and determine relative acid strength using pKa values.	Lectures Class Discussions Problem Solving Laboratory Activity and Report	Section Exam and Comprehensive Final Exam
3. Explain properties of organic compounds including alkanes and cycloalkanes and identify alkane isomers and cycloalkane cis- trans isomers.	Lectures Class Discussions Problem Solving Laboratory Activity and Report	Section Exam and Comprehensive Final Exam

LEAR	NING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. Ide col alk cyc em cyc col mc sul Ne an mc	entify the nformations of small cloalkanes, with nphasis on clohexane chair nformation with ono, di and tri bstitutions. Draw ewman projections d predict stability of olecules.	Lectures Class Discussions Problem Solving Molecular Models Activity	Section Exam and Comprehensive Final Exam
5. Ide rac rea dia tra inte rea cha	entify and draw dical and polar action mechanisms d use energy agrams to identify nsition states, ermediates and actant-product energy anges.	Lectures Class Discussions Problem Solving Emphasis on Reaction Mechanisms	Section Exam and Comprehensive Final Exam
6. Ex alk ele wit Ma cal rea	plain properties of kenes and discuss ectrophilic addition th the use of arkovnikov's Rule and rbocation arrangement.	Lectures Class Discussions Problem Solving Emphasis on Reaction Mechanisms Laboratory Activity and Report	Section Exam and Comprehensive Final Exam
7. Dis rea elin rec rac Wr me con alk	scuss synthesis and actions of alkenes: mination, addition, duction, oxidation and dical polymerization. rite and explain echanisms for mmon reactions of kenes.	Lectures Class Discussions Problem Solving Emphasis on Reaction Mechanisms Laboratory Activity and Report	Section Exam and Comprehensive Final Exam
8. Na dis rea elir hyd oxi alk ar	ame alkynes and scuss synthesis and actions of alkynes: mination, addition, dration, reduction, idative cleavage and sylation of acetylide nions.	Lectures Class Discussions Problem Solving Emphasis on Reaction Mechanisms Laboratory Activity and Report	Section Exam and Comprehensive Final Exam

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
9. Identify enantiomers,	Lectures	Section Exam and
with one or more	Class Discussions	Comprehensive Final Exam
chirality centers, R, S	Problem Solving	
configuration,	Molecular Models Activity	
diastereomers, meso		
compounds and		
racemic mixtures.		
10. Name alkyl halides and	Lectures	Section Exam and
discuss synthesis:	Class Discussions	Comprehensive Final Exam
radical halogenation	Problem Solving	
and allylic bromination	Laboratory Activity and	
and discuss reactions:	Report	
use of Grignard	Emphasis on Reaction	
Reagents and coupling	Mechanisms	
Reactions.		
11. Discuss the	Lectures	Section Exam and
mechanisms of alkyl	Class Discussions	Comprehensive Final Exam
halides: Sn1, SN2, E1,	Problem Solving	
E1cb and E2; plus their	Emphasis on Reaction	
kinetics and the	Mechanisms	
Zaitsev's Rule.	Laboratory Activity and	
	Report	
12. Interpret mass spectra	Lectures	Section Exam and
using fragmentation	Class Discussions	Comprehensive Final Exam
patterns and infrared	Problem Solving	
spectra using location of	Laboratory Activity and	
common functional	Report	
groups.		
13. Interpret ¹³ C, DEPT ¹³ C	Lectures	Section Exam and
and ¹ H NMR using	Class Discussions	Comprehensive Final Exam
chemical shifts,	Problem Solving	
integration and spin-	Laboratory Activity and	
spin splitting	Report	
techniques.		
14. Discuss properties of	Lectures	Section Exam and
conjugated dienes:	Class Discussions Problem	Comprehensive Final Exam
addition reaction,	Solving	
electrophilic addition,	Emphasis on Reaction	
kinetic vs.	Mechanisms	
thermodynamic control,		
Diels-Alder reaction and		
ultraviolet spectroscopy.		

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

II.

- I. Structure and Bonding
 - A. Atomic Structure: Orbitals and Electron Configuration
 - B. Valence Bond Theory
 - C. Hybridization: sp, sp² and sp³ Orbitals
 - D. Molecular Orbital Theory
 - Polar Covalent Bonds; Acids and Bases
 - A. Electronegativity
 - B. Dipole Moments
 - C. Formal Charges
 - D. Rules and Drawing Resonance Structures
 - E. Bronsted-Lowry Definition
 - F. Using pKa Values in Looking at Acid Strength
 - G. Organic Acids and Bases
 - H. Lewis Definition
 - I. Drawing Chemical Structures and Molecular Models
- III. Alkanes and Cycloalkanes
 - A. Functional Groups
 - B. Isomers
 - C. Alkyl Groups
 - D. Nomenclature
 - E. Properties
 - F. cis-trans Isomers of Cycloalkanes
- IV. Stereochemistry of Alkanes and Cycloalkanes
 - A. Conformations of Ethane, Propane and Butane
 - B. Baeyer Strain Theory
 - C. Conformations of Cyclopropane, Cyclobutane, Cyclopentane and Cyclohexane
 - D. Axial and Equatorial Bonds in Cyclohexane of Chair Conformation
 - E. Monosubstituted Cyclohexane
 - F. Conformational Analysis of di and tri Substituted Cyclohexane
 - G. Boat Cyclohexane
- V. Stereochemistry
 - A. Enantiomers
 - B. Chirality and Optical Activity
 - C. R, S Configuration
 - D. Diastereomers
 - E. Meso Compounds
 - F. Two Chirality Centers
 - G. Physical Properties of Stereoiosomers
 - H. Racemic Mixtures and their Resolution

- VI. Organic Reactions
 - A. Radical Reaction Mechanism
 - B. Polar Reaction Mechanism
 - C. Using arrows
 - D. Reaction Equibilibria, Rates and Energy Changes
 - E. Bond Dissociation Energies
 - F. Energy Diagrams and Transition States
 - G. Intermediates
- VII. Alkenes
 - A. Degree of Unsaturation
 - B. Nomenclature
 - C. Electronic Structure
 - D. Cis-Trans Isomers
 - E. E, Z Designation
 - F. Electrophilic Addition of HX
 - G. Markovnikov's Rule
 - I. Carbocation Stability and Structure
 - J. Hammond Postulate
 - K. Carbocation Rearrangement
- VIII. Alkenes Synthesis and Reactions
 - A. Elimination Reactions
 - B. Addition of Halogens
 - C. Halohydrin Formation
 - D. Addition of Water: Oxymercuration
 - E. Addition of Water: Hydroboration
 - F. Addition of Carbenes: Cyclopropane Synthesis
 - G. Reduction: Hydrogenation
 - H. Oxidation: Hydroxylation and Cleavage
 - I. Addition of Radicals: Polymers
- IX. Alkynes
 - A. Structure
 - B. Nomenclature
 - C. Synthesis: Elimination of Dihalides
 - D. Addition of HX and X₂
 - E. Hydration
 - F. Reduction
 - G. Oxidative Cleavage
 - H. Alkylation of Acetylide Anions
 - I. Introduction to Organic Synthesis
- X. Alkyl Halides
 - A. Nomenclature
 - B. Structure
 - C. Radical Halogenation of Alkanes
 - D. Allylic Bromination of Alkenes and Stability of Allyl Radical
 - E. Synthesis from Alcohols
 - F. Organohalides: Grignard Reagents
 - G. Organometallic Coupling Reactions
 - H. Oxidation and Reduction

- XI. Reactions of Alkyl Halides
 - A. Walden Inversion
 - B. Nucleophilic Substitution and Kinetics
 - C. S_N2 Reaction and Kinetics
 - D. S_N1 Reaction Kinetics and Stereochemistry
 - E. Eliminations Reactions and Zaitsev's Rule
 - F. E₂ Reaction
 - G. E₁ Reaction
- XII. Structure Determination I
 - A. Mass Spectrometry, Interpretation, and Behavior of Common Functional Groups
 - B. Fragmentation Patterns
 - C. Electromagnetic Spectrum
 - D. Infrared Spectroscopy, Interpretation and Behavior of Common Functional Groups
- XIII. Structure Determination II
 - A. Nuclear Magnetic Resonance Spectroscopy
 - B. Chemical Shifts
 - C. ¹³C NMR: Signal Averaging and FT-NMR
 - D. DEPT ¹³C NMR
 - E. ¹H NMR and Proton Equivalence
 - F. Integration of ¹H NMR
 - G. Spin-Spin Splitting in 1H NMR: Simple and Complex
- XIV. Conjugated Dienes and Ultraviolet Spectroscopy
 - A. Conjugated Dienes: Preparation and Stability
 - B. Molecular Orbital Description
 - C. Electrophilic Addition: Allylic Carbocation
 - D. Kinetic vs. Thermodynamic Control
 - E. Diels-Alder Cycloaddition Reaction
 - F. Ultraviolet Spectroscopy
 - G. Effect of Conjugation and Color

SEQUENCE OF EXPERIMENTS:

- 1. Melting Points and Boiling Points
 - a. Melting Points of Pure Urea and Cinnamic Acid
 - b. Melting Points of Urea-Cinnamic Acid Mixtures
 - c. Identify Unknowns Via Melting and Boiling Point
 - d. Boiling Points Using a Digital Thermometer and a Reaction Tube
- 2. Simple Distillation of Ethanol & Water; Fractional Distillation of Ethanol & Water
- 3. Recrystallization of Naphthalene from a Mixed Solvent
- 4 Thin Layer Chromatography
 - a. Identify Unknown Analgesics
- 5. Extraction of Caffeine from Tea Microscale
 - a. Prepare Flowchart

- 6. Dehydration of Cyclohexanol
 - a. Preparation of Cyclohexene Microscale
 - b. Test for Alkanes and Alkenes. with Bromine Water
 - c. Infrared Spectroscopy
- 7. Macroscale Addition of Bromine to Stilbene to Prepare Meso-Stilbene Dibromide
- 8. Microscale Nucleophilic Substitution Reactions
- 9. Infrared Spectroscopy; Nuclear Magnetic Resonance; Ultraviolet Spectroscopy and Mass Spectroscopy

LEARNING MATERIALS:

McMurry, J. (2024). Organic Chemistry (10th ed.). OpenStax.

McMurry, S. (2024). *Study Guide and Student Solutions Manual* (10th ed.). OpenStax. Williamson, K., Masters, K. (2017). *Macroscale and Microscale Organic Experiments* (7th ed.). Cengage.

Molecular Models

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Prepared by: Revised by: VPAA/Provost	Dr. E. Martins, Assistant P Dr. L. McAtee, Assistant P Compliance Verification:	rofessor of Chemistry rofessor of Chemistry Dr. John C. Flynn, Jr.	Date: Date: Date:	10/9/2004 2/5/2009 9/11/2009
Revised by: VPAA/Provost	Dr. L. McAtee, Assistant Professor of Chemistry t or designee Compliance Verification: Victoria L. Bastecki-Perez, Ed.D.		Date:	12/17/2012
			Date:	2/13/2013
Revised by: Debbie Dalrymple			Date:	6/27/2016
17001100031	Victoria L. Bastecki-Perez	, Ed.D.	Date:	6/17/2016
Revised by: VPAA or desig	Margaret Bryans, Ph.D. nee Compliance Verificatio	n:	Date: Date:	11/5/2024 11/13/2024

Charfweet

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.