Montgomery County Community College CIS 111B Computer Science II: Object-Oriented Programming 3-2-2

COURSE DESCRIPTION:

This course introduces students to the object-oriented programming paradigm and focuses on the definition and use of classes and the fundamentals of object-oriented design. It is designed for students that already have a firm foundation in procedural programming concepts. A high-level programming language such as Java or C++ is used. This is the second course for computer majors.

PREREQUISITE(S):

CIS 111 - Computer Science I: Programming and Concepts, with "C" or better or equivalent experience in procedural programming techniques

CO-REQUISITE(S): None

Upon successful completion of this course, the student will be able to:

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
1. Demonstrate a working	Lecture	Programming projects
knowledge of objects	Discussion	Homework Assignments
and object-oriented	Student Presentations	Group Projects
design principles.		Quizzes
		Exams
2. Produce well designed	Lecture	Programming projects
and documented	Discussion	Homework Assignments
programs that are	Student Presentations	Group Projects
organized in a logical		Quizzes
and efficient fashion.		Exams
3. Create programs	Lecture	Programming projects
demonstrating mastery	Discussion	Homework Assignments
of fundamental	Student Presentations	Group Projects
computing algorithms		Quizzes
(such as simple sorts		Exams
and searching		
algorithms) to create		
programs		
demonstrating mastery		
of these concepts.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS		
4. Understand the history	Lecture	Programming projects		
and development of	Discussion	Homework Assignments		
programming	Student Presentations	Group Projects		
languages and		Quizzes		
paradigms.		Exams		
		Oral presentations		
5. Understand the basic	Lecture	Programming projects		
concepts surrounding	Discussion	Homework Assignments		
computer language	Student Presentations	Group Projects		
translation.		Quizzes		
		Exams		
		Oral presentation		
6. Understand the	Lecture	Programming projects		
application of computer	Discussion	Homework Assignments		
science concepts to	Student Presentations	Group Projects		
information processing,		Quizzes		
artificial intelligence,		Exams		
simulation, and games		Oral presentation		

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- Review of Control Structures, Methods, and Primitive Data Types
- Object-Oriented Programming Concepts
 - o Design
 - Encapsulation and information hiding
 - Separation of behavior and implementation
 - Classes and subclasses
 - o Inheritance
 - Polymorphism
 - Class hierarchies
- Search and Sorting Algorithms
 - o Linear search
 - Binary search
 - Selection sort
 - Insertion sort
- Fundamentals of Event-Driven Programming
- Graphics API (Introduction)
- Selected Applications from information systems, artificial intelligence, simulation, and games
- History of Programming Languages and Paradigms

- Virtual Machines
 - Virtual Machines
 - Intermediate languages
- Introduction to Language Translation
 - Comparison of interpreters and compilers
 - Translation phases
 - Machine-dependent aspects of translation
 - Machine-independent aspects of translation

LEARNING MATERIALS:

Dale & Lewis. Computer Science Illuminated (7th ed.) w/ Navigate2 access code. Jones and Bartlett. 9781284155617

Gaddis, Tony. Starting Out w/ Java: From Control Structures through Objects + My Programming Lab, 7th ed. Pearson. 978-0135188637

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:		
Prepared by: Alan Evans	Date:	
Revised by: Linda Moulton	Date:	
VPAA/Provost Compliance Verification: Dr. John C. Flynn, Jr.	Date:	9/11/2009
Revised by: Kendall Martin	Date:	3/2013
VPAA/Provost or designee Compliance Verification:		
Victoria Bastecki-Perez, Ed.D.	Date:	7/11/2013
	2 0.10	.,
Revised by: Marie Hartlein	Date:	10/1/2019
VPAA/Provost or designee Compliance Verification:		10/1/2019
VEAA/ETOVOSI OF GESIGNEE COMPILATICE VEHICATION.	Dale.	10/1/2019

What-feos

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.