Montgomery County Community College CIS 126 Computer Architecture & Organization 3-2-2

COURSE DESCRIPTION:

This course is designed to explore how a computing system works and introduces the student to the organization and architecture of computer systems using the Assembly programming language. Computer Science students will gain insight into the functional components of a computer system. Topics covered will include digital logic, data representation, interfacing and I/O strategies, memory architecture, a computer's functional organization, and multiprocessing. The importance of CPU clock speed, cache size, bus organization, and number of core processors will also be discussed.

REQUISITES:

Previous Course Requirements

 CIS 111 Computer Science I: Programming and Concepts with a minimum grade of "C"

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Design a simple circuit utilizing digital logic. 	Lecture Discussion Projects Tests	Quizzes
 Discuss data compression, rounding errors, and the limitations of representing data in digital form. 	Lecture Discussion	Competency Checklist Live Computer Lab Demonstration
3. Trace the progression of computers from vacuum tubes to VLSI.	Lecture Discussion	Exams

IF	ARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
	Describe the		Competency Checklist
	architecture of a	Discussion	
	computer by defining		
	the relationship		
	between instruction set		
	architecture, micro		
	architecture, and		
	system architecture.		
5.	Define instruction set	Lecture	Live Computer Lab
	architecture (ISA),	Discussion	Demonstration
	machine-level	Homework Assignments	Exams
	instruction in terms of its		
	functionality and		
	resource use (registers		
	and memory) and the		
	difference between		
	register-to-memory		
	ISAs and load/store		
6.	ISAs.	Lecture	Competency Checklist
0.	Distinguish between the various classes of	Discussion	Competency Checklist
	instruction: data	Discussion	
	movement, arithmetic,		
	logical, and flow control.		
7.		Lecture	Live Computer Lab
	language code to	Discussion	Demonstration
	demonstrate how	Hands-On Lab Exercises	Quizzes
	subroutines are called,	Homework Assignments	
	parameters are passed,		
	and returns are made.		
8.	Explain open- and	Lecture	Competency Checklist
	closed-loop		Quizzes
	communications, the		
	use of buffers to control		
	dataflow and how		
	interrupts are used to		
	implement I/O control		
	and data transfers.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
 9. Define various types of buses in a computer system and show how devices compete for and access is granted to a bus. 	Lecture	Exams
10. Outline the progress in bus technology, memory technology and storage standards.	Lecture Discussion	Competency Checklist
11. Explain memory hierarchies, cache refill traffic, cache memory organization and cache coherency in multiprocessor systems.	Lecture Discussion	Quizzes
12. Implement register transfer language to show internal operations in a computer.	Lecture Hands-On Lab Exercises Discussion Homework Assignments	Live Computer Lab Demonstration
13. Illustrate how a CPU's control unit interprets a machine-level instruction and how conditional operations are implemented at the machine level.	Lecture Discussion	Live Computer Lab Demonstration
14. Chart the difference between processor performance and system performance. (i.e., the effects of memory systems, buses and software on overall performance)	Lecture Discussion	Competency Checklist

		,
LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
15. Describe superscalar architectures that use multiple arithmetic units to execute more than one instruction per clock cycle.	Lecture Discussion	Quizzes
16.Explain performance measurement limitations when using MIPS or SPECmarks.	Lecture Discussion	Live Computer Lab Demonstration
17. Analyze the relationship between power dissipation and computer performance and the need to minimize power consumption in mobile applications.	Lecture Discussion	Quizzes
18. Describe techniques used to enhance processor performance such as parallelism, pipelining, 64-bit register parallel processing of multimedia values, incorporating multiple processors on a single chip, and the use of special-purpose graphics processors, GPUs, for graphics applications.	Lecture Hands-On Lab Exercises	Live Computer Lab Demonstration Exams

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Digital Logic and Data Representation
 - a. Introduction to digital logic (logic gates, flip-flops, circuits)
 - b. Logic expressions and Boolean functions
 - c. Representation of numeric data
 - d. Signed and unsigned arithmetic
 - e. Range, precision, and errors in floating-point arithmetic
 - f. Representation of text, audio, and images
 - g. Data compression
- 2. Computer Architecture & Organization
 - a. Overview of the history of the digital computer
 - b. Introduction to instruction set architecture, micro architecture and system architecture
 - c. Processor architecture instruction types, register sets, addressing modes
 - d. Processor structures memory-to-register and load/store architectures
 - e. Instruction sequencing, flow-of-control, subroutine call and return mechanisms
 - f. Structure of machine-level programs
 - g. Limitations of low-level architectures
 - h. Low-level architectural support for high-level languages
- 3. Interfacing and I/O Strategies
 - a. I/O fundamentals: handshaking and buffering
 - b. Interrupt mechanisms: vectored and prioritized, interrupt acknowledgment
 - c. Buses: protocols, arbitration, direct-memory access (DMA)
 - d. Examples of modern buses: e.g., PCIe, USB, Hypertransport
- 4. Memory Architecture
 - a. Storage systems and their technology (semiconductor, magnetic)
 - b. Storage standards (CD-ROM, DVD)
 - c. Memory hierarchy, latency and throughput
 - d. Cache memories operating principles, replacement policies, multilevel cache, cache coherency
- 5. Functional Organization
 - a. Review of register transfer language to describe internal operations in a computer
 - b. Microarchitectures hardwired and microprogrammed realizations
 - c. Instruction pipelining and instruction-level parallelism (ILP)
 - d. Overview of superscalar architectures
 - e. Processor and system performance
 - f. Performance their measures and their limitations
 - g. The significance of power dissipation and its effects on computing structures

- 6. Multiprocessing
 - a. Amdahl's law
 - b. Short vector processing (multimedia operations)
 - c. Multicore and multithreaded processors
 - d. Flynn's taxonomy: Multiprocessor structures and architectures
 - e. Programming multiprocessor systems
 - f. GPU and special-purpose graphics processors
 - g. Introduction to reconfigurable logic and special-purpose processors

LEARNING MATERIALS:

- Computer Organization and Architecture: Designing for Performance. 10th Edition. Stallings, Prentice Hall. 2015. ISBN: 9780134101613.
- Learning materials, such as links to online Assembly Language programming resources, will be made available to the student via the course management system.

COURSE APPROVAL:				
Prepared by:	Marie Hartlein	Date:	1995	
Revised by:	Kathy Kelly	Date:	4/2012	
Revised by:	Larry Elias	Date:	7/10/13	
VPAA/Provost or designee Compliance Verification:				
	Victoria L. Bastecki-Perez, Ed.D.	Date:	7/11/2013	

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.