Montgomery County Community College CIS 276 Game & Simulation Programming Foundations 3-2-2

COURSE DESCRIPTION:

This course introduces students to the necessary mathematical techniques and physical modeling principles for electronic game and simulation development. Students will learn mathematical tools underlying the development of gaming software algorithms. They will use a range of software products to implement these algorithms and modeling methods.

REQUISITES:

Previous Course Requirements

CIS 111B Computer Science II: Object-Oriented Programming, with a minimum grade of "C"

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Apply geometric principles to achieve translations, rotation, and scaling of objects in 2 and 3 dimensional spaces. 	Assigned Readings Lecture Discussion Hands-On Lab Exercises Homework Assignments Projects Quizzes/Exams	Tests or Quizzes Final project
2. Apply trigonometric principles to compute relative forces in the motion of objects in 2 and 3 dimensional spaces.	Assigned Readings Lecture Discussion Hands-On Lab Exercises Homework Assignments Projects Quizzes/Exams	Tests or Quizzes Final Project
 Apply linear algebraic techniques to model linear and non-linear translations, rotations and mappings in 2 and 3 dimensional spaces. 	Assigned Readings Lecture Discussion Hands-On Lab Exercises Homework Assignments Projects Quizzes/Exams	Tests or Quizzes Final Project

LE	ARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS	
4.	Demonstrate the ability	Assigned Readings	Game Development	
	to mathematically model	Lecture	Projects	
	2d and 3d kinematics	Discussion	Final Project	
	with systems involving	Hands-On Lab Exercises		
	reflections, linear	Homework Assignments		
	motion in constant	Projects		
	gravity fields, and	Quizzes/Exams		
	inelastic collisions.			
5.	Demonstrate the ability	Assigned Readings	Game Development	
	to use mathematical	Lecture	Projects	
	tools in a rapid software	Discussion	Final Project	
	development	Hands-On Lab Exercises		
	environment (such as a	Homework Assignments		
	game engine) by	Projects		
	developing gaming	Quizzes/Exams		
	scenes and interactions.			
6.	Explain the	Assigned Readings	Tests or Quizzes	
	fundamentals of video	Lecture		
	hardware design and	Discussion		
	how it impacts the	Hands-On Lab Exercises		
	software design of	Homework Assignments		
	gaming/simulation	Projects		
	products.	Quizzes/Exams		

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Geometric Modeling in 2 and 3 Dimensions
- 2. Use of Vectors and Matrices to Model Objects in Higher Dimensional Spaces
- 3. Transformations Rotations, Scaling, Linear and Non-Linear Mappings
- 4. Review of Popular Tools for Creating and Manipulating 2d and 3d Worlds
- 5. Linear Motion in 2 Dimensions
- 6. Linear Motion in 3 Dimensions
- 7. Review of Game Engines as a Programming Environment
- 8. Video Graphics Chip Design and Its Impact on Software and Algorithm Design

LEARNING MATERIALS: Menard. (2015). Game Development with Unity, 2nd ed.

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE AF	PROVAL:		
Prepared by:	Kendall Martin	Date:	11/2004
Revised by:	Alan Evans	Date:	3/2005
Revised by:	Jason Wertz	Date:	4/2008
Revised by:	Jason Wertz	Date:	7/25/2013
VPAA/Provos	st or designee Compliance Verification:		
	Victoria Bastecki-Perez, Ed.D.	Date:	7/29/2013
Revised by:	Pat Rahmlow and Debbie Dalrymple	Date:	1/11/2018

VPAA/Provost or designee Compliance Verification:

Date: 1/30/2018

What-feos

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.