Montgomery County Community College EGR 203 Engineering Statics 3-2-2

COURSE DESCRIPTION:

This course describes the mechanical behavior of materials and systems in equilibrium using Newton's laws of motion. Students will learn the principles of force and moment equilibrium, construction and analysis of free-body diagrams, understanding distributed forces, friction, and structural response. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- EGR 111 Engineering Computations
- EGR 115 Engineering Graphics
- MAT 190 Calculus I
- PHY 151 Principles of Physics I

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Examine the standard procedures for performing numerical calculations. Propose and apply a general method for solving problems. 	Lecture Problem Solving Assignments Design of Experiments	Section Examination Design of Experiments Review

LE	ARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS	
2.	Demonstrate an ability	Lecture	Section Examination	
	to add forces and	Problem-Solving	Design of Experiments	
	resolve them into	Assignments	Review	
	components using the	Design of Experiments		
	Parallelogram Law, to			
	express force and			
	position in Cartesian			
	vector form, to			
	determine a vector's			
	magnitude and			
	direction, and to use the			
	dot product in order to			
	determine angle			
	between two vectors or			
	the projection of one			
	vector onto another			
0	Vector.		Continue Examination	
3.	Apply the concept of a	Lecture Drahlara Caliting	Section Examination	
	ree-body diagram for a	Appignments	Design of Experiments	
	particle and solve	Assignments	Review	
	problems using the	Design of Experiments		
	concepts and equations			
	of static equilibrium			
4.	Compute the moment	Lecture	Section Examination	
	for a force in two and	Problem-Solving	Design of Experiments	
	three dimensions about	Assignments	Review	
	a specified axis, the	Design of Experiments		
	moment of a couple, the			
	resultant of			
	nonconcurrent force			
	systems, and the			
	reduction of a simple			
	force distributed loading			
	to a resultant force			
	having a specified			
	location.			
5.	Apply the equations of	Lecture	Section Examination	
	equilibrium for a rigid	Problem-Solving	Design of Experiments	
	body to solve rigid-body	Assignments	Keview	
	equilibrium problems	Design of Experiments		
	using the equations of			
	equilibrium and free-			
	body diagrams.			

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
6. Determine the forces in members of a truss using the method of joints and the method of	Lecture Problem-Solving Assignments Design of Experiments	Section Examination Design of Experiments Review
the forces acting on the members and machines composed of pin- connected members.		
 Describe the concept of center of gravity, center of mass, and the centroid. Determine the location of the center of gravity and centroid for a system of discrete particles and a body of an arbitrary shape. 	Lecture Problem-Solving Assignments Design of Experiments	Section Examination Design of Experiments Review
8. Apply the method of sections for determining the external loadings of a beam and formulate equations that can be plotted so that they describe the internal shear and moment throughout a member.	Lecture Problem-Solving Assignments Design of Experiments	Section Examination Design of Experiments Review
 Explain the concept of friction and analyze the equilibrium of rigid bodies subjected to a force. 	Lecture Problem-Solving Assignments Design of Experiments	Section Examination Design of Experiments Review

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

1. Introduction

- a. What is Mechanics
- b. Fundamental Concepts and Principles
- c. System of Units
- d. Converting between Two Systems of Units
- e. Method of Solving Problems
- f. Numerical Accuracy

2. Statics of Particles

- a. Addition of Planar Forces
- b. Adding Forces by Components
- c. Forces and Equilibrium in a Plane
- d. Adding Forces in Space
- e. Forces and Equilibrium in Space

3. Rigid Bodies: Equivalent Systems of Forces

- a. Forces and Moments
- b. Moment of a Force about an Axis
- c. Couples and Force-Couple Systems
- d. Simplifying Systems of Forces

4. Equilibrium of Ridge Bodies

- a. Equilibrium in Two Dimensions
- b. Two Special Cases
- c. Equilibrium in Three Dimensions

5. Analysis of Structures

- a. Analysis of Trusses
- b. Other Truss Analysis
- c. Frames
- d. Machines

6. Distributed Forces: Centroids and Centers of Gravity

- a. Planar Centers of Gravity and Centroids
- b. Further Considerations of Centroids
- c. Additional Applications of Centroids
- d. Centers of Gravity and Centroids of Volumes

7. Internal Forces and Moments

- a. Internal Forces in Members
- b. Beams
- c. Relations Among Load, Shear, and Bending Moment

8. Friction

- a. The Laws of Dry Friction
- b. Wedges and Screws
- c. Belt Friction

LEARNING MATERIALS: Present selected text: Beer, F.P., Johnston, E.R. Jr., Mazurek, D.F., Eisenberg, E.R. (2010). *Vector Mechanics for Engineers: Statics and Dynamics* (9th Ed.). McGraw-Hill.

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:							
Prepared by:	William Brownlowe		Date:	3/1/2004			
VPAA/Provost	Compliance Verification:	Dr. John C. Flynn, Jr.	Date:	6/9/2004			
Revised by: Dr. David Brookstein, Dean for STEM			Date:	3/9/2013			
	Victoria L. Bastecki-Perez,	L. Bastecki-Perez, Ed.D.		4/16/2013			
Revised by: VPAA/Provost	Chengyang Wang, Ph.D. or designee Compliance V	erification:	Date: 1 Date:	2/21/2017 1/10/2018			

Whit-feos

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.