Montgomery County Community College EGR 211 Linear Electrical Systems I 4-3-3

COURSE DESCRIPTION:

This course covers the fundamental laws and procedures of electric circuit analysis including Kirchhoff's laws, superposition, and Thévenin's and Norton's theorems. Elementary transients, sinusoidal steady-state analysis, impedance, power transfer, and operational amplifiers are covered. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- EGR 111 Engineering Computations
- MAT 190 Calculus I

Previous or Concurrent Course Requirements

- MAT 201 Calculus II
- PHY 152 Principles of Physics II

	-	-
LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
1. Utilizing the SI system	Lecture	Section Examination
of units and standard	Problem Solving	Design of Experiments
prefixes, determine the	Assignments	Review
basic electrical	Design of Experiments	
quantities of voltage,		
current, and power		
absorbed in a simple		
series or parallel circuit,		
using the passive sign		
convention.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
2. Apply Ohm's and	Lecture	Section Examination
Kirchoff's laws to solve	Problem-Solving	Design of Experiments
for voltage and current	Assignments	Review
in both single-loop	Design of Experiments	
and single-node-pair		
circuits, incorporating		
both independent and		
dependent sources		
and including the		
application of y-delta		
transformations in the		
analysis of the same.		
3. Employ Kirchhoff's	Lecture	Section Examination
current law (KCL) or	Problem-Solving	Design of Experiments
Kirchoff's voltage law,	Assignments	Review
whichever is deemed	Design of Experiments	
more appropriate, to		
perform nodal analysis		
or loop analysis		
respectively to calculate		
all currents and		
voltages in circuits that		
and loops		
4 Analyze the behavior of		Section Examination
the operational amplifier	Problem-Solving	Design of Experiments
including a variety of	Assignments	Review
circuits that employ the	Design of Experiments	
use of the same and		
describe the behavior of		
such devices in		
practical applications.		
5. Apply the concepts of	Lecture	Section Examination
linearity and	Problem-Solving	Design of Experiments
equivalence to analyze	Assignments	Review
electric circuits using	Design of Experiments	
the principles of		
Superposition, and		
Thévenin and Norton		
equivalence, including		
the appropriate use of		
source transformation		
and maximum power		
transfer.		

LE	ARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
6.	Examine circuit	Lecture	Section Examination
	behavior for inductors	Problem-Solving	Design of Experiments
	and capacitors in order	Assignments	Review
	to calculate voltage,	Design of Experiments	
	current, power, and		
	stored energy in and		
	through the same and		
	to determine inductive		
	and capacitive		
	equivalency.		
7.	Calculate initial and	Lecture	Section Examination
	time-dependent values	Problem-Solving	Design of Experiments
	for inductor currents	Assignments	Review
	and capacitor voltages	Design of Experiments	
	in both first and second-		
	order transient circuits.		
8.	Perform phasor and	Lecture	Section Examination
	inverse-phasor	Problem-Solving	Design of Experiments
	transformations, draw	Assignments	Review
	phasor diagrams, and	Design of Experiments	
	calculate impedance		
	and admittance for the		
	basic circuit elements:		
	R, L, C, including		
	computing and		
	compining impedances		
	and admittances in		
	series and parallel,		
	where necessary, to		
	ting current and voltage.		

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

1. Basic Concepts

- a. Systems of Units
- b. Basic Quantities
- c. Circuit Elements
- 2. Resistive Circuits
 - a. Ohm's Laws
 - b. Kirchhoff's Laws
 - c. Single Loop Circuits

- d. Single Node Pair Circuits
- e. Series and Parallel Resistor Combinations
- f. Circuits with Series-Parallel Combinations
- g. Y-Delta Combinations
- h. Circuits with Dependent Sources
- i. Resistor Technologies for Electronics Manufacturing
- j. Application Examples
- k. Design Applications

3. Nodal and Loop Analysis Techniques

- a. Nodal Analysis
- b. Loop Analysis
- c. Application Examples
- d. Design Examples

4. Operational Amplifiers (Op-Amps)

- a. Op-Amp Models
- b. Fundamentals of Op-Amp Circuits
- c. Comparators
- d. Application Examples
- e. Design Examples

5. Additional Analysis Techniques

- a. Superposition
- b. Thévenin's and Norton's Theorems
- c. Maximum Power Transfer
- d. Application Examples
- e. Design Examples

6. Capacitance and Inductance

- a. Capacitors
- b. Inductors
- c. Capacitor-Inductor Combinations
- d. RC Operational Amplifier Circuits
- e. Application Examples
- f. Design Examples

7. First-and Second Order Transient Circuits

- a. First-Order Circuits
- b. Second-Order Circuits
- c. Application Examples
- d. Design Examples

8. AC Steady State Analysis

- a. Sinusoids
- b. Sinusoidal and Complex Forcing Functions
- c. Phasors
- d. Phasor Relationships for Circuit Elements
- e. Impedance and Admittance
- f. Phasor Diagrams
- g. Basic Analysis Using Kirchhoff's Laws
- h. Analysis Techniques

- i. Application Examples
- j. Design Examples

LEARNING MATERIALS:

Present selected text:

Irwin, J.D. and Nelms, R.M. (2011). *Basic Engineering Circuit Analysis* (10th ed.). Wiley.

Simulation Software – Multisim

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Prepared by:	William Brownlowe	
Revised by:	Dr. David Brookstein, Dean for STEM	
VPAA/Provost or designee Compliance Verification:		
	Victoria L. Bastecki-Perez, Ed.D.	

Revised by: Gayathri Moorthy, Ph.D VPAA/Provost or designee Compliance Verification:

What-feas

Date: 7/26/1998 Date: 3/8/2013 Date: 4/16/2013 Date: 12/21/2017 Date: 1/10/2018

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.