Montgomery County Community College EGT 203 Applied Statics 4-3-3

COURSE DESCRIPTION:

This course covers Newton's first law as applied to particles and rigid bodies. Topics include the study of elementary, analytical and practical applications of the principles and physical concepts of statics. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- EGT 190 Principles of Critical Thinking in Technology
- MAT 161 Precalculus I
- High school Physics or equivalent (PHY121)

Previous or Concurrent Course Requirements

– MAT 162 Precalculus II

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Solve the following types of engineering problems: a. Forces in a plane b. Forces in space c. Equilibrium of forces in two dimensions d. Equilibrium of forces in three dimensions e. Distributed forces in centroids and centers of gravity 	Lecture Problem Sets Design of Experiments	Exams Homework Evaluation Design of Experiments Evaluation Final Project Presentation and Evaluation
 Perform analysis of structures such as trusses, frames and machines. 	Lecture Problem Sets Design of Experiments	Exams Homework Evaluation Design of Experiments Evaluation Final Project Presentation and Evaluation

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS	
3. Calculate forces in	Lecture	Exams	
beams and cables.	Problem Sets	Homework Evaluation	
	Design of Experiments	Design of Experiments	
		Evaluation	
		Final Project Presentation	
		and Evaluation	
4. Relate/calculate the	Lecture	Exams	
effects of friction in real	Problem Sets	Homework Evaluation	
world problems.	Design of Experiments	Design of Experiments	
		Evaluation	
		Final Project Presentation	
		and Evaluation	
5. Calculate the effects of	Lecture	Exams	
distributed forces	Problem Sets	Homework Evaluation	
related to moments of	Design of Experiments	Design of Experiments	
inertia.		Evaluation	
		Final Project Presentation	
		and Evaluation	

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Principles of Statics
- 2. Statics of Particles
- 3. Rigid Bodies in Three Dimensions
- 4. Centroids and Centers of Gravity
- 5. Analysis of Structures
- 6. Friction

LEARNING MATERIALS:

Textbook:

Beer, Ferdinand P. and Johnston, Jr., E. Russell. (2007). *Mechanics for Engineers: Statics* (5th ed.). McGraw Hill. ISBN 0-07-246478-X

Other learning materials may be required and made available directly to the student and/or via the College's Blackboard course management system.

COURSE APP	ROVAL:		
Prepared by:	H. Thomas Tucker, Jr.	Date:	11/28/2004
	Assistant Professor of Engineering		
Revised by:	William H. Brownlowe	Date:	9/26/2013
VPAA/Provost or designee Compliance Verification: Victoria L. Bastecki-Perez, Ed.D.		Date:	1/15/2014
Revised by: D VPAA/Provost	ebbie Dalrymple or designee Compliance Verification:	Date: Date:	12/17/2017 1/9/2018

Mul-feve

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.