Montgomery County Community College EGT 210 Digital Devices 4-3-3

COURSE DESCRIPTION:

This course introduces the student to basic digital circuit design and analysis with an emphasis on applications. The course is taught in a laboratory-oriented environment and incorporates a design-of-experiments approach to fabrication and test of a variety of digital circuits. Interactive computer-based instructional systems reinforce the material covered in class. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- EGT 190 Principles of Critical Thinking in Technology
- MAT 161 Precalculus I
- PHY 121 General Physics I
- PHY 122 General Physics II, or equivalent

Concurrent Course Requirements None

	-	
LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
1. Explain basic digital theory	Lecture	Exams
and its applications.	Group Problem Solving Design of Experiments	Design of Experiments Review
2. Describe the uses of digital	Lecture	Exams
devices from basic logic	Group Problem Solving	Design of Experiments
gates through advanced	Design of Experiments	Review
circuit applications.		
3. Operate equipment	Lecture	Exams
necessary to monitor and	Group Problem Solving	Design of Experiments
troubleshoot digital circuits.	Design of Experiments	Review
4. Design, assemble, and	Lecture	Term Design/Fabrication
present digitally-based	Group Problem Solving	Project Presentation
devices or systems.	Design of Experiments	Review

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Introduction to Digital Concepts, Number Systems, Operations, and Codes
- 2. Logic Gates
- 3. Boolean Algebra and Logic Simplification
- 4. Combinational Logic
- 5. Functions of Combinational Logic
- 6. Introduction to Programmable Logic Devices
- 7. Flip-Flops and Related Devices
- 8. Counters
- 9. Shift Registers
- 10. Sequential Logic Applications
- 11. Memory Types and Designs
- 12. Digital System Interfacing
- 13. Introduction to Microprocessors

LEARNING MATERIALS:

Textbook:

Thomas Floyd. (2008). *Digital Fundamentals* (10th ed.). Prentice Hall. ISBN: 9780132359238

Other learning materials may be required and made available directly to the student and/or via the College's Blackboard course management system.

COURSE APP	ROVAL:		
Prepared by:	William H Brownlowe	Date:	11/28/2004
	Associate Professor of Engineering		
Revised by:	William H. Brownlowe	Date:	9/26/2013
VPAA/Provost	Associate Professor of Engineering or designee Compliance Verification:		
	Victoria L. Bastecki-Perez, Ed.D.	Date:	6/11/2014
Revised by: Debbie Dalrymple		Date:	12/17/2017
VPAA/Provost or designee Compliance Verification:		Date:	1/9/2018

Whit-feos

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.