Montgomery County Community College EGT 211 AC/DC Circuits 4-3-3

COURSE DESCRIPTION:

This course covers advanced principles of passive DC and AC electrical circuits. The DC network is initially introduced to provide a solid understanding of the relationships of multiple current and voltage supply configurations in multi-loop circuits. The single-phase sinusoidal AC network is then introduced followed by multi-phase AC networks. Basic filtering networks and transformer theory are also covered. Substantial laboratory-based activities are included to reinforce and validate the circuit theory. A basic background in college-level general physics II is required as well as a working knowledge of complex- number mathematics, simultaneous equations, and basic trigonometry to enroll in this course. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- EGT 190 Principles of Critical Thinking in Technology
- PHY 122 General Physics II, or equivalent
- MAT 162 Precalculus II

Concurrent Course Requirements None

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
Upon successful		
completion of this course,		
the student will be able to:		
1. Explain the operation of	Lecture	Exams
passive DC/AC	Group Problem Solving	Design of Experiments
electrical network	Activities	Review
circuits.	Design of Experiments	
2. Use appropriate	Lecture	Exams
equipment necessary to	Group Problem Solving	Design of Experiments
measure and	Activities	Review
characterize the	Design of Experiments	
behavior of steady-state		
and dynamic network		
circuit parameters.		
3. Successfully design and	Lecture	Term Design/Fabrication
assemble steady-state	Group Problem Solving	Project Presentation
and dynamic network	Activities	Review
	Docian of Exporimente	
	Design of Experiments	

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The

benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Review of Algebra and Trigonometry as Applied to Advanced Circuit Evaluation Techniques
- 2. Symbols and Schematics
- 3. Series/Parallel Circuit Principles
- 4. Capacitors and Inductors (Advanced Topics)
- 5. Electric and Magnetic Field Theory
- 6. Sinusoidal Voltages and Currents in Complex AC/DC Circuits
- 7. Admittance and Susceptance
- 8. Resonant Circuit Evaluation Techniques
- 9. Non-Sinusoidal Current and Voltage
- 10. Three Phase Systems

LEARNING MATERIALS:

Textbook:

Robert Boylestad. Introductory Circuit Analysis (12th ed.) 2010. Prentice Hall. ISBN: 9780137146666

Other learning materials may be required and made available directly to the student and/or via the College's Blackboard course management system.

COURSE APPROVAL:

Prepared by:	Willliam H. Brownlowe	Date:	4/7/2004
Revised by:	Associate Professor of Engineering William H. Brownlowe	Date:	7/22/2013
VPAA/Provost	Associate Professor of Engineering		
17001100030	Victoria L. Bastecki-Perez, Ed.D.	Date:	1/15/2014
Revised by: D	ebbie Dalrymple	Date:	12/17/2017
VPAA/Provost	or designee Compliance Verification:	Date:	1/9/2018

Whit-feod

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.