Montgomery County Community College EGT 235 Instrumentation and Controls 4-3-3

COURSE DESCRIPTION:

This course provides the student the opportunity to investigate the selection and use of automated control devices and their associated input and output interfaces to measure operating characteristics in both electrical and mechanical systems. The student will work with programmable logic equipment as well as electromechanical devices and design actual processes that will then be monitored and feedback controlled. A design-of-experiments approach to learning is incorporated into the course. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITE(S):

Previous Course Requirements

- EGT 190 Principles of Critical Thinking in Technology
- EGR 111 Engineering Computations, or equivalent
- PHY 121 General Physics I
- PHY 122 General Physics II or equivalent
- MAT 162 Precalculus II

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
Explain the function of	Lecture	Exams
the devices and	Case Studies	Design of Experiments
systems used in the	Design of Experiments	Review
monitoring and		
feedback control of		
industrial processes.		
2. Apply the	Lecture	Exams
troubleshooting	Case Studies	Design of Experiments
techniques necessary to	Design of Experiments	Review
maintain an industrial		
control process.		
3. Operate robotic, AC/DC	Lecture	Exams
motor and PLC-based	Case Studies	Design of Experiments
systems.	Design of Experiments	Review

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. Design and fabricate a	Lecture	Group Problem Solving
control system to	Design/Fabrication Project	Design/Fabrication Project/
control a process.		Presentation Review

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Overview of Industrial Automation
- 2. Safety
- 3. Overview of Programmable Logic Controllers
- 4. Fundamentals of Programming
- 5. Rockwell Automation Addressing and Instructions
- 6. Timers and Counters
- 7. Input/Output Modules and Wiring
- 8. Math and Advanced Instructions
- 9. Industrial Sensors
- 10. Introduction to Robotics
- 11. Introduction to Fluid Power Actuation
- 12. Fundamentals of Process Control
- 13. Process Control Systems
- 14. Overview of Plant Floor Communication
- 15. Computer Numerical Control (CNC) Machines
- 16. Installation, Maintenance, and Troubleshooting

LEARNING MATERIALS:

Textbook:

Stenerson. Industrial Automation and Process Control. (2003). Pearson.

ISBN: 9780130330307

Laboratory:

Allen Bradley 5000 PLC and Rockwell RSLogix Training Software KUKA Agilus Robots and Control Software Lab Volt Electro-Mechanical Trainer Systems

Other learning materials may be required and made available directly to the student and/or via the College's Blackboard course management system.

COURSE APPROVAL:

Jul-fevo

Prepared by: W. Brownlowe Date: 11/28/2004

Associate Professor of Engineering

Revised by: William H. Brownlowe Date: 9/26/2013

Associate Professor of Engineering

Revised by: William H. Brownlowe Date: 1/17/2014

VPAA/Provost or designee Compliance Verification:

Victoria L. Bastecki-Perez, Ed.D Date: 6/10/2014

Revised by: Debbie Dalrymple Date: 12/17/2017 VPAA/Provost or designee Compliance Verification: Date: 1/9/2018

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.