Montgomery County Community College ESC 211 Material, Safety and Equipment Overview for Nanofabrication 3-2-2

COURSE DESCRIPTION

This course overviews basic material properties as well as environment, health, and safety (EHS) issues in equipment operation and materials handling in "top down" and "bottom up" nanofabrication. The chemical and physical materials properties underlying nanotechnology are surveyed. EHS topics arising from the processing and disposal of these materials are addressed including: cleanroom operation, OSHA lab standard safety training, health issues, biosafety levels (BSL) guidelines, and environmental concerns. Specific safety issues dealing with nanofabrication equipment, materials, and processing will also be discussed including those pertinent to wet benches, thermal processing tools, vacuum systems and pumps, gas delivery systems and toxic substance handling and detection.

This course is designed to be one of six capstone courses (ESC 211, 212, 213, 214, 215, 216) for the Penn State Semiconductor Manufacturing Technology (SMT) program. The course is lab intensive, leveraging the Nanofabrication Facility on the University Park campus. All lectures will be given in a technology classroom, Suite **114** Luber Bldg., Research Park. This classroom is dedicated to the Center for Semiconductor Manufacturing Technology and thus has a wide variety of very specialized, "hands-on" materials and facilities continually available to students. The course grade evaluation will use a mixture of tests, presentations, reports, and project assignments. Teaming and team problem solving will be stressed.

REQUISITES:

Previous Course Requirements None

Concurrent Course Requirements None

COURSE COMMENT

A department recommendation, upon review of appropriate educational background, academic performance and personal interview are required for registration.

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Obtain a preliminary understanding of the interfacing of the various stages of the nanofabrication process through identification of those stages and their respective functions. 	Lecture Group and individual skills training activities	Exams Projects Presentations Laboratory Activities
 Identify the safe handling of various materials used in nanofabrication. 	Lecture Group and individual skills training activities	Exams Projects Presentations Laboratory Activities
 Identify the rules and regulations associated with nanofabrication manufacturing. 	Lecture Group and individual skills training activities	Exams Projects Presentations Laboratory Activities
 Utilize procedures to safely operate nanofabrication equipment. 	Lecture Group and individual skills training activities	Exams Projects Presentations Laboratory Activities

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

Topic 1	Lecture Labs	Overview: industry safety, health, environmental issues General safety training, Nanofab orientation
Topic 2	Lecture Labs	Cleanrooms: operation, safety, and health issues Facility tour: chase, catwalks, control room

Topic 3	Lecture	Vacuum pump systems: operation,	
		environmental, safety and health issues	
	Labs	Cleanrooms demos, pump rebuilding,	
		training module	
Topic 4	Lecture	Vacuum accessories	
	Labs	Cleanroom demos, training module: gauges and	
		controllers	
Topic 5	Lecture	Gas delivery: regulators, purge systems, valves and	
		fittings, Toxic gas monitoring	
	Discussion	Hands-on assembly in classroom	
	Lab	Cleanroom examples	
Topic 6	Lecture	RF-systems	
	Lab	Cleanroom power supply and matching network	
Topic 7	Lecture	Chemical handling	
	Discussion	MSDS review	
	Lab	Cleanroom identification	
Topic 8	Lecture	Equipment overview: subsystems	
	Discussion	Subsystem identification: vacuum, AC power,	
		pneumatic, RF power, cooling, gas distribution,	
		control	
Topic 9	Lecture	Equipment overview: training	
		-	
	Discussion	Virtual tour review	
	Lab	Cleanroom subsystem identification.	

LEARNING MATERIALS

Per Penn State

- 1. Nanostructures & Nanomaterials; Synthesis, Properties & Applications by Guozhong Cao [ISBN 1-86094-480-9]
- 2. Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda [ISBN 0-13-081520-9]

Instructor handouts Guest speakers. Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:						
Prepared by:	William Brownlowe	Date:	4/2000			
VPAA/Provost	or designee Compliance Verification:					
Brad Gottfried		Date:	4/20/2000			
Revised by:	William Brownlowe	Date:	7/20/2013			
VPAA/Provost	or designee Compliance Verification:					
	Victoria L. Bastecki-Perez, Ed.D.	Date:	6/11/2014			
	VICIONA L. DASIECKI-FEIEZ, LU.D.	Dale.	0/11/2014			

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.