MONTGOMERY COUNTY COMMUNITY COLLEGE ESC 212 Basic Nanotechnology Processes 3-2-2

COURSE DESCRIPTION

This course is an overview of the broad spectrum of processing approaches involved in "top down", "bottom up", and hybrid nanofabrication. The majority of the course details a step-by-step description of the equipment, facilities processes and process flow used in today's device and structure fabrication. Students learn to appreciate processing and manufacturing concerns including safety, process control, contamination, yield, and processing interaction. The students design process flows for micro- and nano-scale systems. Students learn the similarities and differences in "top down" and "bottom up" equipment and process flows by undertaking hands-on processing. This hands-on overview exposure covers basic nanofabrication processes including deposition, etching, and pattern transfer.

This course is designed to be one of six capstone courses (Esc 211, 212, 213, 214, 215, 216) for the Penn State Semiconductor Manufacturing Technology (SMT) program. The course is lab intensive, leveraging the Nanofabrication Facility on the University Park campus. All lectures will be given in a technology classroom, Suite 114 Lubert bldg., Research Park. This classroom is dedicated to the Center for Semiconductor Manufacturing Technology and thus has a wide variety of very specialized, "hands-on" materials and facilities continually available to students. The course grade evaluation will use a mixture of tests, presentations, reports, and project assignments. Teaming and team problem solving will be stressed.

REQUISITES:

Previous Curse Requirements

- ESC 211 Material Safety and Equipment Overview for Nanofabrication.

Concurrent Course Requirements None

			,	
LEARNING OUTCOMES		LEARNING ACTIVITIES	EVALUATION METHODS	
Upon successful				
	mpletion of this course,			
the student will be able to:				
1.	Obtain a better	Lecture	Exams	
	understanding of the	Group and individual skills	Projects	
	interfacing of the	training activities	Presentations	
	various stages of the		Laboratory Activities	
	nanofabrication process			
	through identification of			
	those stages and their			
	respective functions.			
2.	Describe processing	Lecture	Exams	
	of various materials	Group and individual skills	Projects	
	used in nanofabrication.	training activities	Presentations	
			Laboratory Activities	
3.	Describe the various	Lecture	Exams	
	applications of	Group and individual skills	Projects	
	nanofabrication.	training activities	Presentations	
			Laboratory Activities	
4.	Reinforce the	Lecture	Exams	
	importance of safe and	Group and individual skills	Projects	
	accurate operation of	training activities	Presentations	
	nanofabrication		Laboratory Activities	
	manufacturing			
	equipment.			

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS

~							
	Topic 1	Lecture	Materials overview				
		Lab	Evaporator training				
	Topic 2	Lecture	p-n junction diode process flow				
		Lab	electrical characteristics: curve tracer, I-V, C-V training				
	Topic 3	Lecture	Equipment subsystems: oxidation furnace				
		Lab	Oxidation training				

Topic 4	Lecture Labs	Equipment subsystems: chemical vapor deposition Cleanroom subsystem identification
Topic 5	Lecture	Equipment subsystems: plasma etching
	Lab	Exposure matrix on MA-6
Topic 6	Lecture	Equipment subsystems: ion implantation
	Lab	Implanter subsystem demonstration
Topic 7	Lecture	n-p-n bipolar transistor process
	Lab	flow lithography training
Topic 8	Lecture	CMOS transistor process flow
	Lab	RIE training
Topic 9	Lecture	Power device process flow
	Lab	Ellipsometry, Profilometery training
Topic 10	Lecture	MEM process flow
	Lab	SEM training and demonstration
Topic 11	Lecture	Biomedical device fabrication
	Lab	Wet chemical training

LEARNING MATERIALS

Textbooks per Penn State:

- 1. Nanostructures & Nanomaterials; Synthesis, Properties & Applications by Guozhong Cao [ISBN 1-86094-480-9]
- 2. Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda [ISBN 0-13-081520-9]

Instructor handouts Guest speakers

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:									
Prepared by:	William Brownlowe		Date:	4/11/2000					
VPAA/Provost	Compliance Verification:	Brad Gottfried	Date:	4/20/2000					
			-						
	William Brownlowe	· ··· ··	Date:	9/24/2013					
VPAA/Provost	Data	0/44/0044							
	Victoria L. Bastecki-Perez	, Ed.D.	Date:	6/11/2014					

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.