Montgomery County Community College ESC 213 Materials in Nanotechnology 3-2-2

COURSE DESCRIPTION

This course is an in-depth, hands-on exposure to the producing and tailoring of the materials used in nanofabrication. The course will cover chemical materials production techniques such as colloidal chemistry; atmosphere, low-pressure and plasma enhanced chemical vapor deposition; nebulization; and atomic layer deposition. It will also cover physical techniques such as sputtering; thermal and electron beam evaporation; and spin-on approaches. This course is designed to give students experience in producing a wide variety of materials tailored for their mechanical, electrical, optical, magnetic, and biological properties.

This course is designed to be one of six capstone courses (Esc 211, 212, 213, 214, 215, 216) for the Penn State Semiconductor Manufacturing Technology (SMT) program. The course is lab intensive, leveraging the Nanofabrication Facility on the University Park campus. All lectures will be given in a technology classroom, Suite 114 Luber bldg., Research Park. This classroom is dedicated to the Center for Semiconductor Manufacturing Technology and thus has a wide variety of very specialized, "hands-on" materials and facilities continually available to students. The course grade evaluation will use mixture of tests, presentations, reports and project assignments. Teaming and team problem solving will be stressed.

REQUISITES:

Previous Course Requirements

- ESC 212 Basic Nanotechnology Processes

Concurrent Course Requirements None

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
Upon successful completion		
of this course, the student		
will be able to:		
1. Obtain a better	Lecture	Exams
understanding of the	Group and individual	Projects
interfacing of the various	skills training activities	Presentations
stages of the		Laboratory Activities
nanofabrication process		
through identification of		
those stages and their		
respective functions.		

LE	ARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS	
2.	Apply skills in	Lecture	Exams	
	deposition and etching	Group and individual	Projects	
	procedures.	skills training activities	Presentations	
			Laboratory Activities	
3.	Discuss the various	Lecture	Exams	
	applications of	Group and individual	Projects	
	deposition and etching.	skills training activities	Presentations	
			Laboratory Activities	
4.	Safely and effectively	Lecture	Exams	
	operate deposition and	Group and individual	Projects	
	etching equipment.	skills training activities	Presentations	
			Laboratory Activities	

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS

Topic 1	Lecture	Deposition processes overview
	Lab	
Topic 2	Lecture	Chemical Vapor deposition (CVD) processes
	Lab	LPCVD nitride deposition
Topic 3	Lecture	Chemical Vapor deposition (CVD) processes
	Lab	LPCVD oxide deposition
Topic 4	Lecture	Chemical vapor deposition (CVD) processes
	Lab	LPCVD polysilicon deposition
Topic 5	Lecture	Plasma Enhanced CVD
	Lab	ECR PERCVD demonstration

Topic 6	Lecture	Physical vapor deposition: sputtering		
	Lab	Sputter tool demonstration: tin oxide		
Topic 7	Lecture	Physical vapor deposition: thermal and e-gun evaporation		
	Lab	Aluminum and Titanium deposition		
		Auminum and manium deposition		
Topic 8	Lecture	Wet chemical etching		
	Lab	Buffered Oxide Etch (BOE) rate determination		
Topic 9	Lecture	Plasma etching		
	Lab			
Topic 10	Lecture	Reactive Ion Etching (RIE)		
	Lab	Metal etching in Plasmathcrm 720		
Topic 11	Lecture	High ion density reactors: dielectrics		
	Labs	Oxide etching in Applied Materials MERIE		
Topic 12	Lecture	High ion density reactors: polymers		
	Lab			
Topic 13	Lecture	High ion density reactors: MEMs deep silicon Membrane		
	Lab			
		Membrane release procedure		

LEARNING MATERIALS Textbook: Identified by Penn State Instructor handouts Guest speakers

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APP	ROVAL:				
Prepared by:	William Brownlowe		4/11/2000		
VPAA/Provost	or designee Compliance Verification:				
	Brad Gottfried		4/20/2000		
Revised by:	William Brownlowe	Date:	9/24/2013		
VPAA/Provost or designee Compliance Verification:					
Victoria L. Bastecki-Perez, Ed.D. Date:					

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.