Montgomery County Community College ESC 215 Nanotechnology Applications 3-2-2

COURSE DESCRIPTION

This course covers the applications of nano-scale devices and systems and the material chemical, physical, biological, or multiple-property requirements necessitated in these applications. Material modifications to meet these requirements will be addressed including structure control, composition control, surface property control, strain control, functionalization, and doping.

This course is designed to be one of six capstone courses (Esc 211, 212, 213, 214, 215, 216) for the Penn State Semiconductor Manufacturing Technology (SMT) program. The course is lab intensive, leveraging the Nanofabrication Facility on the University Park campus. All lectures will be given in a technology classroom, Suite 114 Lubert Bldg., Research Park. This classroom is dedicated to the Center for Semiconductor Manufacturing Technology and thus has a wide variety of very specialized, "hands-on" materials and facilities continually available to students. The course grade evaluation will use a mixture of tests, presentations, reports, and project assignments. Teaming and team problem solving will be stressed.

REQUISITES

Previous Course Requirements

- ESC 214 Patterning for Nanotechnology

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Obtain a better understanding of the interfacing of the various stages of the of the nanofabrication process through identification of those stages and their respective functions. 	Lecture Group and individual skills training activities	Exams Projects Presentations Laboratory Activities

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
2. Apply skills in the	Lecture	Exams
development of micro-	Group and individual skills	Projects
and nano-level circuitry.	training activities	Presentations
		Laboratory Activities
3. Discuss the precision	Lecture	Exams
necessary in	Group and individual skills	Projects
nanofabrication.	training activities	Presentations
		Laboratory Activities
4. Safely and efficiently	Lecture	Exams
operate Oxidation,	Group and individual skills	Projects
Implantation,	training activities	Presentations
Annealing, Diffusion,		Laboratory Activities
and Epitaxial growth		
equipment.		

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS

S
)

Lecture	Ion implantation
Discussion	Lab 4 results (cross-wafer uniformity)
Labs	Boron implant into n-type substrate
Lecture	Rapid thermal annealing
Discussion Labs	Activation of boron implant
Lecture	Diffusion processes
Discussion	Lab 6 results
Labs	Simulations for deep n-well
Lecture	Epitaxial growth-silicon
Discussion	
Labs	Phosphorous implant
Lecture	Epitaxial growth-III-V, II-VI
Discussion	Lab 8 results
Lab	
	Discussion Labs Lecture Discussion Labs Lecture Discussion Labs Lecture Discussion Labs Lecture Discussion Labs

LEARNING MATERIALS Textbook: Determined by Penn State Instructor handouts Guest speakers

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:					
Prepared by:	William Brownlowe	Date:	4/11/2000		
VPAA/Provost or designee Compliance Verification:					
	Brad Gottfried	Date:	4/20/2000		
Revised by:	William Brownlowe	Date:	9/24/2013		
VPAA/Provost					
	Victoria L. Bastecki-Perez, Ed.D.	Date:	6/11/2014		
	William Brownlowe or designee Compliance Verification:	Date:	9/24/2013		

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.