Montgomery County Community College AST 120/PHY 120/GLG 121 Introduction to Astronomy 4-3-3

COURSE DESCRIPTION:

Introduction to Astronomy is a one-semester college-level course in basic astronomy. The course may be used as a laboratory science elective with basic algebraic applications. The course explores a broad range astronomical concepts and principles in ten major areas: understanding the sky, apparent motions of the planets and the sun, telescopes and accompanying technology, basic structure and behavior of atoms, origin and analysis of light, origin of the solar system, internal structure and behavior of the sun, lifecycle of all stellar classes, origin and structure of galaxies, and cosmology. Throughout the course, emphasis is placed on the implementation of the scientific method, the evidence that astronomers use to support their conclusions, and the importance of astronomy. (Nighttime observing is required). This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- ENG 010A Basic Writing, ENG 011 Basic Writing II, or ESL 011 Basic Writing within 5 years with a minimum grade of "C"

Concurrent Course Requirements

MAT 090 - Fundamentals of Algebra, or MAT 011 - Beginning Algebra, or MAT 011B - Beginning Algebra with Review of Arithmetic with a minimum grade of C within 5 years, or High School Algebra II with a minimum grade of B within 5 years.. May be taken prior or during course.

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
1. Identify the major structures of the universe.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations Field Trip to Local Planetarium Observational Journal Sketching	Laboratory Exercises Homework Assignments Group Research Paper and Presentation Observational Journal Sketching Examinations

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
Explain the role of constellations and the	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments
concepts and terminology	Telescope, Binocular and	Observational Journal
associated with the celestial	Other Night Sky	Sketching
sphere.	Observations	Examinations
	Field Trip to Local	
	Planetarium	
	Observational Journal	
	Sketching	Laborator E contrar
3. Compare and contrast	Lecture/Discussion	Laboratory Exercises
pre-modern to modern scientific models of the	Laboratory Exercises Telescope, Binocular and	Homework Assignments Examinations
universe.	Other Night Sky	Examinations
diliverse.	Observations	
4. Analyze and compute	Lecture/Discussion	Laboratory Exercises
Kepler's laws of planetary	Laboratory Exercises	Homework Assignments
motion and Newton's Laws		Examinations
of Motion.		
5. Describe the operation of	Lecture/Discussion	Laboratory Exercises
optical telescopes and the	Laboratory Exercises	Homework Assignments
factors that determine the	Telescope, Binocular and	Examinations
light-gathering, magnifying, and resolving powers of the	Other Night Sky Observations	
telescope.	Observations	
6. Explain the	Lecture/Discussion	Laboratory Exercises
characteristics and	Laboratory Exercises	Homework Assignments
properties of the	,	Examinations
electromagnetic spectrum		
and their effects on		
astronomical equipment and		
observations.		
7. Describe a simplified	Lecture/Discussion	Laboratory Exercises
model of a typical atom and its fundamental behavior.	Laboratory Exercises	Homework Assignments Examinations
8. Evaluate the interaction	Lecture/Discussion	Laboratory Exercises
of light and matter to	Laboratory Exercises	Homework Assignments
determine stellar chemical	Laboratory Excrosos	Examinations
composition and motion as		
revealed by the Doppler		
Effect.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
9. Compare and contrast the major types of planets in order to develop a theory governing the creation and formation of the solar system.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations	Laboratory Exercises Homework Assignments Examinations
10. Describe the internal structure and behavior of the sun as determined by the solar magnetic cycle and nuclear fusion.	Lecture/Discussion Laboratory Exercises Movie/Discussion	Laboratory Exercises Homework Assignments Examinations
11. Analyze and interpret the Hertzsprung-Russell (H-R) diagram to determine stellar properties such as radius, mass, luminosity, and stage of evolution.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations
12. Define terms such as parallax, parsec, supernova, and white dwarf.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations
13. Outline and explain the theorized process by which stars evolve, from molecular cloud to main sequence to death based upon their mass.	Lecture/Discussion Laboratory Exercises Movie/Discussion	Laboratory Exercises Homework Assignments Examinations
14. Identify the major morphological classes of galaxies, demonstrate how the distance, diameter, luminosity, and mass of a galaxy are measured, and explain their creation and evolution.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations	Laboratory Exercises Homework Assignments Examinations
15. Evaluate and explain current theories regarding the evolution of the universe by understanding current observing methods and analyzing recent and recurrent data.	Lecture/Discussion Laboratory Exercises Movie/Discussion Group Research Paper and Presentation	Laboratory Exercises Homework Assignments Group Research Paper and Presentation Examinations

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
16. Compare and contrast current theories regarding dark matter, dark energy, multiple universes and other topics to evaluate their validity.	Lecture/Discussion Laboratory Exercises Movie/Discussion Group Research Paper and Presentation	Laboratory Exercises Homework Assignments Group Research Paper and Presentation
17. Manipulate algebraic expressions, including the square root and logarithm functions, to solve for and calculate the values of specific variables and express these answers in scientific notation with appropriate units.	Lecture/Discussion Laboratory Exercises Movie/Discussion	Laboratory Exercises Homework Assignments Examinations

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- A. Introduction
- B. Understanding the Night Sky
- C. Origins of Modern Astronomy
- D. Astronomical Tools and Technology
- E. Origin and Properties of Light
- F. Structure and Basic Behavior of Atoms
- F. Structure and Behavior of the Sun
- G. Origin and Properties of the Solar System
- H. Properties of Stars
- I. Evolution of Stars
- J. Neutron Stars, Black Holes and Our Galaxy
- K. Origin and Properties of Galaxies
- L. Cosmology

LEARNING MATERIALS:

Course Textbook:

Seeds, Michael A. (2010). *Horizons, Exploring the Universe* (12th edition). Belmont, CA: Wadsworth Publishing Company.

Laboratory Exercises Textbook:

Ferguson, Dale C. (2001). *Introductory Astronomy Exercises* (2nd edition). Belmont, CA: Wadsworth Publishing Company.

Spangler, Kelli. AST 120 Lab Manual 2011.

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Charlwest

Prepared by: Dr. Peter J. Bachmann Date: 4/1997

Revised by: Dr. Peter J. Bachmann Date: Summer 2004
Revised by: Kelli Spangler, Lecturer of Astronomy Date: 2/10/2009
Revised by: Kelli Spangler Date: Spring 2011

Interim VPAA/Provost Compliance Verification:

Victoria L. Bastecki-Perez, Ed.D. Date: 5/17/2011

Revised by: Kelli Spangler Date: 6/2012

VPAA/Provost or designee Compliance Verification:

Victoria L. Bastecki-Perez, Ed.D. Date: 6/19/2012

Revised by: Kelli Spangler Date: 8/2013

VPAA/Provost or designee Compliance Verification:

Victoria L. Bastecki-Perez, Ed.D. Date: 8/7/2013

Revised by: Debbie Dalrymple Date: 11/13/2017

VPAA/Provost or designee Compliance Verification:

Victoria L. Bastecki-Perez, Ed.D. Date: 12/18/2017

Revised by: Kelli Spangler Date: 6/7/2023 VPAA or designee Compliance Verification: Date: 6/7/2023

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.