Montgomery County Community College MAT 188 Calculus With a Review of Functions I 4-4-0

COURSE DESCRIPTION:

A course primarily designed for students who will major in mathematics, science, engineering, or business. The sequence of courses, MAT 188 and MAT 189, is designed for students who have a good background in functions and trigonometry. MAT 188 and MAT 189 cover similar topics as the sequence MAT 161, MAT 162, and MAT 190 but at a faster pace. Together with MAT 189 the course covers all of the material in MAT 190, Calculus I. MAT 188 covers inequalities, Fundamental Theorem of Algebra, basic trigonometry, Law of Sines and Cosines, limits, differentiation, integration, curve sketching and applications for polynomials and trigonometric functions. A graphing calculator is required for class, homework, and testing. Classroom instruction and programs will be presented using a TI-84 Plus. You must pass both MAT 188 and MAT 189 to transfer credits equivalent to Calculus I. You should not take MAT 188 unless you are planning on taking MAT 189 the next semester.

REQUISITE(S):

Previous Course Requirements

MAT 100 Intermediate Algebra or MAT100B Intermediate Algebra with Review with a minimum grade of "B" and high school trigonometry or MAT 116 Applied Algebra/Trigonometry II and high school trigonometry or MAT 116 Applied Algebra/Trigonometry II with a minimum grade of "C"

Concurrent Course Requirements None

COURSE COMMENTS

 Quantitative Reasoning, Algebra, and Statistics Accuplacer Test Score of 251 or higher <u>or</u> an Advanced Algebra and Functions Accuplacer Test Score of 237-275.

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
Upon successful		
completion of this course,		
the student will be able to:		
Evaluate limits of	Lectures	Tests
polynomials and	Group Work	Homework
trigonometric functions	The Use of Technology	Quizzes
including one-sided		
limits, infinite limits, and		
limits at infinity.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
2. Demonstrate the	Lectures	Tests
concept of the limit.	Group Work	Homework
	The Use of Technology	Quizzes
3. Verify the limit of a	Lectures	Tests
linear function by the	Group Work	Homework
definition.	The Use of Technology	Quizzes
4. Discuss the continuity	Lectures	Tests
and points of	Group Work	Homework
discontinuity of	The Use of Technology	Quizzes
polynomial, piece-wise,		
and trigonometric		
functions. 5. Demonstrate the	Lectures	Tests
concept of the	Group Work	Homework
derivative.	The Use of Technology	Quizzes
6. Differentiate	Lectures	Tests
polynomials and	Group Work	Homework
trigonometric functions	The Use of Technology	Quizzes
using the product,	The cos of Feetinelegy	Q3.2200
quotient and chain		
rules.		
7. Integrate polynomials	Lectures	Tests
and trigonometric	Group Work	Homework
functions.	The Use of Technology	Quizzes
8. Integrate function by the	Lectures	Tests
method of substitution.	Group Work	Homework
	The Use of Technology	Quizzes
9. Apply the Fundamental	Lectures	Tests
Theorem of Algebra.	Group Work	Homework
	The Use of Technology	Quizzes
10.Explain and illustrate	Lectures	Tests
the Fundamental	Group Work	Homework
Theorem of Calculus.	The Use of Technology	Quizzes
11. Apply knowledge of	Lectures	Tests
integration to finding	Small Group Discussions	Homework
area.	The Use of Technology	Quizzes
12. Apply knowledge of	Lectures	Tests
differentiation to curve	Group Work	Homework
sketching and	The Use of Technology	Quizzes
maximum-minimum		
problems involving polynomials and		
trigonometric functions.		
ingonometric functions.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS	
13.Use the knowledge of	Lectures	Tests	
trigonometric definitions	Group Work	Homework	
involving angles,	The Use of Technology	Quizzes	
circular functions, and			
right triangles to solve			
relevant applications.			
14.Graph the six	Lectures	Tests	
trigonometric functions	Group Work	Homework	
and their inverses.	The Use of Technology	Quizzes	
15. Solve trigonometric	Lectures	Tests	
identities and equations.	Group Work	Homework	
	The Use of Technology	Quizzes	
16.Use law of sines and	Lectures	Tests	
cosines to solve	Group Work	Homework	
trigonometric	The Use of Technology	Quizzes	
applications.			
17.Use the TI-84 plus	Lectures	Tests	
graphing calculator in	Group Work	Homework	
relevant Calculus I and	The Use of Technology	Quizzes	
Precalculus concepts.			

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Review of Functions
- 2. Introduction to Polynomials
- 3. Definition of Limits
- 4. Limits of Polynomials
- 5. Continuity
- 6. Introduction to the Derivative
- 7. Numerical Approximation to the Derivative
- 8. Definition of the Derivative
- 9. The Derivative of Polynomials
- 10. The Fundamental Theorem of Algebra
- 11. First Derivative Test of Polynomials
- 12. Second Derivative Test of Polynomials
- 13. Max Min Problem with Polynomials
- 14. Antiderivatives of Polynomials
- 15. Applications of the Integral

- 16. Riemann Sums of Polynomials
- 17. Definite Integrals of Polynomials
- 18. Fundamental Theorem of Calculus
- 19. Area between Polynomials
- 20. Right Angle Trigonometry
- 21. Graph of Trigonometric Functions
- 22. Trigonometric Identities
- 23. Composition, Inverse Functions
- 24. Inverse Trigonometric Functions
- 25. Solving Trigonometric Equations
- 26. Limits of Trigonometric Functions
- 27. Derivative of Trigonometric Functions
- 28. Product, Quotient, and Chain Rules
- 29. Max-Min Problems, Complicated Graphs
- 30. Integration of Trigonometric
- 31. Functions Including Substitution and Area Between Curves
- 32. Law of Sines and Cosines
- 33. Polar Coordinates

LEARNING MATERIALS:

Textbook:

Larson. (2012). Calculus I with Precalculus (3rd ed.). Cengage Learning.

Required Materials:

TI-84+ Graphing Calculator. If a student has a TI-83+, they do not need to buy a TI-84+.

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Prepared by:	Walter Hunter, Assoc. Professor of Mathematics	Date:	12/2001
Revised by:	Walter R. Hunter, Professor of Mathematics	Date:	10/2004
Revised by:	Walter R. Hunter, Professor of Mathematics	Date:	5/2005
Revised by:	Marion Graziano	Date:	12/2/2012
Revised by:	Marion Graziano	Date:	4/2/2013

VPAA/Provost or designee Compliance Verification:

Victoria L. Bastecki-Perez, Ed.D. Date: 4/18/2013

Revised by: Marion Graziano/Debbie Dalrymple Date: 8/2/2017 VPAA/Provost or designee Compliance Verification: Date: 8/24/2017

Wholefers

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.