Montgomery County Community College PHY 115 Technical Physics 4-3-3

COURSE DESCRIPTION:

This course is a one-semester, algebra-based overview of topics in introductory physics designed for students in the life sciences. Topics include basic principles of motion, mechanics, statics, work and energy, fluid mechanics, sound and waves, thermal physics, electricity, magnetism, light, and optics. The weekly laboratory is designed to reinforce material introduced in lecture.

REQUISITES:

Previous Course Requirements

MAT 090 - Fundamentals of Algebra, or MAT 011 - Beginning Algebra, or MAT 011B - Beginning Algebra with Review of Arithmetic with a minimum grade of C within 5 years, or High School Algebra II with a minimum grade of B within 5 years.

Concurrent Course Requirements

None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Recognize basic physical quantities and the units associated with them. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
 Explain how various physical quantities are related to each other. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
 Use the scientific method as applied to problems in classical physics. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
 Solve practical problems in a rigorous and orderly manner using basic physical principles. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
 Recognize the basic physical principles behind the operation of current technologies. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
 Analyze independently devised and performed experiments to test hypotheses. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
 Form tentative interpretations and conclusions to practical problems using experimental evidence. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
 Identify reasonable sources of experimental error. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
9. Communicate experimental results through appropriately written lab reports.	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
10. Interpret the graphical representation of various physical quantities.	Lecture Small Group Discussions Laboratory Experiments Demonstrations Videos Daily Reading and Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Kinematics
- 2. Vectors
- 3. Force and Friction
- 4. Work and Energy
- 5. Conservation of Energy
- 6. Linear momentum
- 7. Rotational Motion
- 8. Newton's Law of Gravitation and Kepler's Laws
- 9. Circular Motion
- 10. Static Equilibrium
- 11. Fluid Mechanics
- 12. Thermodynamics
- 13. Waves and Sound

- 14. Electric Charge and Electric Fields
- 15. Electric Potential
- 16. Capacitance
- 17. Current and Resistance
- 18. DC Circuits
- 19. Magnetism and Magnetic Fields
- 20. Faraday's Law of Electromagnetic Induction
- 21. AC Circuits
- 22. Electromagnetic Waves and the Nature of Light
- 23. Mirrors and Lenses
- 24. Interference and Diffraction of Light

SEQUENCE OF EXPERIMENTS:

- 1. Acceleration Due to Gravity
- 2. Vector Addition
- 3. Newton's 2nd Law
- 4. Friction
- 5. Work-Energy Theorem
- 6. 1-Dimensional Collisions
- 7. Centripetal Force
- 8. Statics
- 9. Thermal Expansion
- 10. Standing Waves and Resonance
- 11. Mapping Electric Fields
- 12. The Oscilloscope
- 13. Basic DC Circuits
- 14. Electromagnetic Induction
- 15. Optics Mirrors and Lenses

LEARNING MATERIALS:

Textbook: Giancoli. (2013) *Physics: Principles with Applications* (7th ed.) Pearson. PHY115 Laboratory Manual Scientific calculator (logarithms, exponential, powers, roots, etc.)

Learning Resources: Physics Computer Lab (Science Center 216) Tutorial Services (College Hall)

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:						
	Thomas French, Assistant Professor of Physics t Compliance Verification:		10/15/2015			
	Dr. Victoria Bastecki-Perez	Date:	3/31/2016			
	Kelli Spangler, Assistant Professor of Physics Compliance Verification:	Date:	11/20/2017			
	Dr. Victoria Bastecki-Perez	Date:	11/20/2017			
	Kelli Spangler, Assistant Professor of Physics nee Compliance Verification:	Date: Date:	6/7/2023 6/7/2023			

Charfweet

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.