Montgomery County Community College PHY 122 General Physics II (Algebra-based) 4-3-3

COURSE DESCRIPTION:

This course, designed for liberal arts and life science majors, is an algebra-based approach to the experimental and analytical study of oscillations, wave motion, acoustics, electrostatics, electric fields, basic direct-current circuits, magnetism, electromagnetic induction, light, and optics. The course also introduces students to the basic concepts of modern physics. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

PHY121 General Physics I (Algebra-based), is strongly recommended, but not required (Recommended)

MAT 090 – Fundamentals of Algebra, or MAT 011 – Beginning Algebra, or MAT 011B – Beginning Algebra with Review of Arithmetic with a minimum grade of "C" within 5 years, or High School Algebra II with a minimum grade of "B" withing 5 years

Concurrent Course Requirements None

COURSE COMMENT

PHY121 General Physics I (Algebra-based), is strongly recommended, but not required

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Recognize basic physical quantities and the units associated with them. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations AV/Multimedia Materials Daily Reading Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
 Explain how various physical quantities are related to each other. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations	Homework/Quiz Laboratory Report Section Examinations Final Exam

		AV/Multimedia Materials		
		Daily Reading		
		Problem-Solving		
	ARNING OUTCOMES Describe and use the	LEARNING ACTIVITIES	EVALUATION METHODS Homework/Quiz	
5.	scientific method as	Small Group Discussions	Laboratory Report	
	applied to problems in	Laboratory Experiments	Section Examinations	
	classical physics.	Demonstrations	Final Exam	
		AV/Multimedia Materials		
		Daily Reading		
		Problem-Solving		
4	Use basic physical	Assignments Lecture	Homework/Quiz	
	principles to solve	Small Group Discussions	Laboratory Report	
	practical problems.	Laboratory Experiments	Section Examinations	
		Demonstrations	Final Exam	
		AV/Multimedia Materials		
		Daily Reading Problem-Solving		
		Assignments		
5.	Solve physics-related	Lecture	Homework/Quiz	
	problems in a rigorous	Small Group Discussions	Laboratory Report	
	and orderly manner.	Laboratory Experiments Demonstrations	Section Examinations Final Exam	
		AV/Multimedia Materials	Fillar Exam	
		Daily Reading		
		Problem-Solving		
		Assignments		
6.	Recognize the basic	Lecture	Homework/Quiz	
	physical principles behind the operation of	Small Group Discussions Laboratory Experiments	Laboratory Report Section Examinations	
	current technologies.	Demonstrations	Final Exam	
		AV/Multimedia Materials		
		Daily Reading		
		Problem-Solving		
7	Devise, perform, and	Assignments Lecture	Homework/Quiz	
1.	analyze properly	Small Group Discussions	Laboratory Report	
	controlled experiments	Laboratory Experiments	Section Examinations	
	to test hypotheses.	Demonstrations	Final Exam	
		AV/Multimedia Materials		
		Daily Reading		
		Problem-Solving Assignments		
<u> </u>		กองหาการการ		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
8. Use experimental evidence to form tentative interpretations and conclusions.	Lecture Small Group Discussions Laboratory Experiments Demonstrations AV/Multimedia Materials Daily Reading Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
 Assign meaningful measurement uncertainties and identify reasonable sources of experimental error. 	Lecture Small Group Discussions Laboratory Experiments Demonstrations AV/Multimedia Materials Daily Reading Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
10. Communicate experimental results through written lab reports.	Lecture Small Group Discussions Laboratory Experiments Demonstrations AV/Multimedia Materials Daily Reading Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
11. Use basic laboratory equipment in a safe and appropriate manner.	Lecture Small Group Discussions Laboratory Experiments Demonstrations AV/Multimedia Materials Daily Reading Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam
12. Interpret the graphical representation of various physical quantities.	Lecture Small Group Discussions Laboratory Experiments Demonstrations AV/Multimedia Materials Daily Reading Problem-Solving Assignments	Homework/Quiz Laboratory Report Section Examinations Final Exam

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The

benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Simple Harmonic Motion
- 2. Waves and Harmonic Waves
- 3. Sound
- 4. Standing Waves
- 5. Electric Charge and Electric Fields
- 6. Electric Potential
- 7. Capacitance
- 8. Current and Resistance
- 9. DC Circuits
- 10. Magnetism and Magnetic Fields
- 11. Charged Particles in Magnetic Fields
- 12. Faraday's Law of Electromagnetic Induction
- 13. AC Circuits
- 14. Electromagnetic Waves and the Nature of Light
- 15. Mirrors and Lenses
- 16. Compound Optical Systems
- 17. Interference of Light
- 18. Diffraction of Light

SEQUENCE OF EXPERIMENTS:

- 1. Simple Harmonic Motion
- 2. Standing Waves and Resonance
- 3. Mapping Electric Fields
- 4. The Oscilloscope
- 5. Basic DC Circuits
- 6. RC Time Constant
- 7. Charged Particles in Magnetic Fields
- 8. Electromagnetic Induction
- 9. AC Circuits
- 10. Optics I Mirrors and Lenses
- 11. Optics II Compound Optical Systems
- 12. Interference of Light
- 13. Diffraction of Light
- 14. Atomic Spectra

LEARNING MATERIALS:

<u>Textbook</u>:

Giancoli. (2013) *Physics: Principles with Applications* (7th ed.). Pearson.

Physics Computer Lab (Science Center 216)

Tutorial Services

Scientific calculator (logarithms, exponential, powers, roots, etc.)

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Revised by:	Thomas French, Assistant Thomas French, Assistant Compliance Verification:	Professor of Physics	Date: Date: Date:	4/11/2006 2/6/2009 9/11/2009
Revised by: Xingshu Zhu, Assistant Professor of Physics VPAA/Provost or designee Compliance Verification:				2/6/2013
	Victoria L. Bastecki-Perez, Ed.D.		Date:	4/25/2013
Revised by: Debbie Dalrymple VPAA/Provost or designee Compliance Verification:			Date:	6/27/2016
	Victoria L. Bastecki-Perez, Ed.D.		Date:	6/27/2016
Revised by: VPAA or desig	James Bretz nee Compliance Verificatio	n:	Date: Date:	6/7/2023 6/7/2023

Charfweet

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.