Montgomery County Community College RAD 103 Radiation Protection and Biology 2-2-0

COURSE DESCRIPTION:

This course is designed to present an overview of the basic principles of radiation protection and the principles of the interaction of radiation with living organisms. Included in this course are the various methods of protecting the radiographer, patient and others from unnecessary radiation exposure and limitation devices used to limit exposure. Factors affecting biological responses are presented including acute and chronic effects of radiation. Basic principles regarding exposure will be discussed. Radiation health and safety requirements of federal and state agencies will also be incorporated.

PREREQUISITE(S):

All fourth semester courses in the Radiography Program of Study

CO-REQUISITE(S):

All fifth semester courses in the Radiography Program

Upon successful completion of this course, the student will be able to:

		•	
LEARNING OUTCOMES		LEARNING ACTIVITIES	EVALUATION METHODS
1. E	xplain the concept of	Lecture/Discussion	Exam Questions
"⊅	As Low as Reasonably	Case Study	Class Discussion
A	chievable" (ALARA)	Computer Technology	
ar	nd the objectives of a	Written Experiences	
ra	diation protection	Student Presentations	
pr	rogram.	Assigned Readings	
		DVD/Videotapes	
2. Id	lentify sources and	Lecture/Discussion	Exam Questions
m	ethods to measure	Case Study	Class Discussion
ra	diation exposure.	Computer Technology	
		Written Experiences	
		Student Presentations	
		Assigned Readings	
		DVD/Videotapes	
3. Id	lentify the basis for	Lecture/Discussion	Exam Questions
00	ccupational exposure	Case Study	Class Discussion
lin	nits.	Computer Technology	
		Written Experiences	
		Student Presentations	
		Assigned Readings	
		DVD/Videotapes	

LEA	ARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. [Describe the principles	Lecture/Discussion	Exam Questions
(of cellular biology	Case Study	Class Discussion
	related to the physical,	Computer Technology	
	chemical and biological	Written Experiences	
	factors influencing	Student Presentations	
	radiation response of	Assigned Readings	
	cells and tissues.	DVD/Videotapes	
_	Calculate dose	Lecture/Discussion	Exam Questions
	equivalent limits with	Case Study	Class Discussion
	reference to the latest	Computer Technology	
ſ	NCRP reports.	Written Experiences	
		Student Presentations	
		Assigned Readings	
6 1	Interpret personnel	DVD/Videotapes Lecture/Discussion	Exam Questions
	Interpret personnel monitoring reports.	Case Study	Class Discussion
'	monitoring reports.	Case Study Computer Technology	Class Discussion
		Written Experiences	
		Student Presentations	
		Assigned Readings	
		DVD/Videotapes	
7. [Differentiate between	Lecture/Discussion	Exam Questions
5	somatic and genetic	Case Study	Class Discussion
r	radiation effects and	Computer Technology	
	discuss specific	Written Experiences	
	associated diseases or	Student Presentations	
	syndromes.	Assigned Readings	
		DVD/Videotapes	
	Research, retrieve and	Lecture/Discussion	Research Paper
	critically evaluate	Case Study	Class Discussion
	relevant information	Computer Technology	
	and discriminate	Written Experiences	
	between credible and	Student Presentations	
r	non-credible sources.	Assigned Readings	
		DVD/Videotapes	

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Introduction
- 2. Units, Detection and Measurement
- 3. Sources of Medical Radiation Exposure

- 4. Review Cell Biology and Biophysical Events
- 5. Radiation Effects
- 6. Radiosensitivity and Response
 - a. Law of Bergonie and Tribondeau
 - b. Cell survival
 - c. Systemic response to radiation
 - d. Radiation dose response curves
 - e. Total body acute and late effects of radiation
 - f. Risk estimates
- 7. Patient Protection
- 8. Legal and Ethical Responsibilities
- 9. Personnel Monitoring and Application of Radiation Safety
- 10. Surveys, Regulatory/Advisory Agencies and Regulations

LEARNING MATERIALS:

Required Texts:

Carroll, Quinn, B. (2018). *Radiography in the Digital Age* (3rd Edition). Springfield, IL: Charles C. Thomas Publisher

Carroll, Quinn, B. (2018). Student Workbook for Radiography in the Digital Age (3rd Edition). Springfield, IL: Charles C. Thomas Publisher

Other Resources located in the Radiography Classroom and/or College Library:

NCRP Reports. National Council on Radiation Protection and Measurements. Bethesda, MD.

Statkiewicz-Sherer, M.A., Visconti, P.J., Ritenour, E.R. (2006). *Radiation Protection in Medical Radiography* (5th ed.). St. Louis, MO: C.V. Mosby.

Statkiewicz-Sherer, M.A., Visconti, P.J., Ritenour, E.R. (2006). *Workbook Radiation Protection in Medical Radiography* (5th ed.). St. Louis, MO: C.V. Mosby.

Selman, Joseph. (2000). *The Fundamentals of Imaging Physics and Radiobiology* (9th ed.). Springfield, IL: Charles C. Thomas.

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:

Prepared by: Cheryl L. Weiss, M.S., R.T. and

Dr. Victoria Bastecki-Perez

Revised by: Debra Poelhuis, M.S., R.T.

Board of Trustees Presentation

VPAA/Provost Compliance Verification: Dr. John C. Flynn, Jr.

Date: 12/2002

Date: 12/2008

Date: 12/2008

Revised by: Debra Poelhuis, R.T., M.S. Date: 10/26/2012

VPAA/Provost or designee Compliance Verification:

Victoria L. Bastecki-Perez, Ed.D. Date: 10/26/2012

Revised by: Cheryl L. DiLanzo, M.S., R.T. Date: 10/28/2016 VPAA/Provost or designee Compliance Verification: Date: 10/28/2016

Wal-fews

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.